1887

Abstract

Phage GH15 is a polyvalent phage that shows activity against a wide range of strains. This study analysed the genome of GH15. The genome size of GH15 (139 806 bp) was found to be larger than that of the known staphylococcal phages, and the G+C content (30.23 mol%) of GH15 was lower than that of any other staphylococcal myovirus phages. By mass spectrometry, ten structural proteins were identified. Analysis revealed that GH15 was closely related to phages G1, ISP, A5W, Sb-1 and K, and was moderately related to Twort. In light of the variability in identity, coverage, G+C content and genome size, coupled with the large number of mosaicisms, there certainly were close evolutionary relationships from K to Sb-1, A5W, ISP, G1 and finally GH15. Interestingly, all the introns and inteins present in the above phages were absent in GH15 and there appeared to be intron loss in GH15 compared with the intron gain seen in other phages. A comparison of the intron- and intein-related genes demonstrated a clear distinction in the location of the insertion site between intron-containing and intron-free alleles, and this might lead to the establishment of a consensus sequence associated with the presence of an intron or intein. The comparative analysis of the GH15 genome sequence with other phages not only provides compelling evidence for the diversity of staphylococcal myovirus phages but also offers new clues to intron shift in phages.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.049197-0
2013-04-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/4/906.html?itemId=/content/journal/jgv/10.1099/vir.0.049197-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410.[PubMed] [CrossRef]
    [Google Scholar]
  2. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bailly-Bechet M. , Vergassola M. , Rocha E. . ( 2007; ). Causes for the intriguing presence of tRNAs in phages. . Genome Res 17:, 1486–1495. [CrossRef] [PubMed]
    [Google Scholar]
  4. Besemer J. , Lomsadze A. , Borodovsky M. . ( 2001; ). GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. . Nucleic Acids Res 29:, 2607–2618. [CrossRef] [PubMed]
    [Google Scholar]
  5. Carver T. , Berriman M. , Tivey A. , Patel C. , Böhme U. , Barrell B. G. , Parkhill J. , Rajandream M. A. . ( 2008; ). Artemis and act: viewing, annotating and comparing sequences stored in a relational database. . Bioinformatics 24:, 2672–2676. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cech T. R. . ( 1990; ). Self-splicing of group I introns. . Annu Rev Biochem 59:, 543–568. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chevalier B. S. , Stoddard B. L. . ( 2001; ). Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. . Nucleic Acids Res 29:, 3757–3774. [CrossRef] [PubMed]
    [Google Scholar]
  8. Coulombe-Huntington J. , Majewski J. . ( 2007; ). Characterization of intron loss events in mammals. . Genome Res 17:, 23–32. [CrossRef] [PubMed]
    [Google Scholar]
  9. Darnell J. E. , Doolittle W. F. . ( 1986; ). Speculations on the early course of evolution. . Proc Natl Acad Sci U S A 83:, 1271–1275. [CrossRef] [PubMed]
    [Google Scholar]
  10. Edgell D. R. , Belfort M. , Shub D. A. . ( 2000; ). Barriers to intron promiscuity in bacteria. . J Bacteriol 182:, 5281–5289. [CrossRef] [PubMed]
    [Google Scholar]
  11. Foley S. , Bruttin A. , Brüssow H. . ( 2000; ). Widespread distribution of a group I intron and its three deletion derivatives in the lysin gene of Streptococcus thermophilus bacteriophages. . J Virol 74:, 611–618. [CrossRef] [PubMed]
    [Google Scholar]
  12. Gill S. R. , Fouts D. E. , Archer G. L. , Mongodin E. F. , Deboy R. T. , Ravel J. , Paulsen I. T. , Kolonay J. F. , Brinkac L. . & other authors ( 2005; ). Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. . J Bacteriol 187:, 2426–2438. [CrossRef] [PubMed]
    [Google Scholar]
  13. Goerke C. , Pantucek R. , Holtfreter S. , Schulte B. , Zink M. , Grumann D. , Bröker B. M. , Doskar J. , Wolz C. . ( 2009; ). Diversity of prophages in dominant Staphylococcus aureus clonal lineages. . J Bacteriol 191:, 3462–3468. [CrossRef] [PubMed]
    [Google Scholar]
  14. Grant J. R. , Stothard P. . ( 2008; ). The CGView Server: a comparative genomics tool for circular genomes. . Nucleic Acids Res 36: (Web Server issue), W181–W184. [CrossRef] [PubMed]
    [Google Scholar]
  15. Gu J. , Lu R. , Liu X. , Han W. , Lei L. , Gao Y. , Zhao H. , Li Y. , Diao Y. . ( 2011a; ). LysGH15B, the SH3b domain of staphylococcal phage endolysin LysGH15, retains high affinity to staphylococci. . Curr Microbiol 63:, 538–542. [CrossRef] [PubMed]
    [Google Scholar]
  16. Gu J. , Xu W. , Lei L. , Huang J. , Feng X. , Sun C. , Du C. , Zuo J. , Li Y. . & other authors ( 2011b; ). LysGH15, a novel bacteriophage lysin, protects a murine bacteremia model efficiently against lethal methicillin-resistant Staphylococcus aureus infection. . J Clin Microbiol 49:, 111–117. [CrossRef] [PubMed]
    [Google Scholar]
  17. Gu J. , Zuo J. , Lei L. , Zhao H. , Sun C. , Feng X. , Du C. , Li X. , Yang Y. , Han W. . ( 2011c; ). LysGH15 reduces the inflammation caused by lethal methicillin-resistant Staphylococcus aureus infection in mice. . Bioeng Bugs 2:, 96–99. [CrossRef] [PubMed]
    [Google Scholar]
  18. Gu J. , Liu X. , Lu R. , Li Y. , Song J. , Lei L. , Sun C. , Feng X. , Du C. . & other authors ( 2012; ). Complete genome sequence of Staphylococcus aureus bacteriophage GH15. . J Virol 86:, 8914–8915. [CrossRef] [PubMed]
    [Google Scholar]
  19. Haugen P. , Simon D. M. , Bhattacharya D. . ( 2005; ). The natural history of group I introns. . Trends Genet 21:, 111–119. [CrossRef] [PubMed]
    [Google Scholar]
  20. Hendrix R. W. . ( 2003; ). Bacteriophage genomics. . Curr Opin Microbiol 6:, 506–511. [CrossRef] [PubMed]
    [Google Scholar]
  21. Hendrix R. W. , Hatfull G. F. , Smith M. C. . ( 2003; ). Bacteriophages with tails: chasing their origins and evolution. . Res Microbiol 154:, 253–257. [CrossRef] [PubMed]
    [Google Scholar]
  22. Krupovic M. , Prangishvili D. , Hendrix R. W. , Bamford D. H. . ( 2011; ). Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. . Microbiol Mol Biol Rev 75:, 610–635. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kuroda M. , Ohta T. , Uchiyama I. , Baba T. , Yuzawa H. , Kobayashi I. , Cui L. , Oguchi A. , Aoki K. . & other authors ( 2001; ). Whole genome sequencing of meticillin-resistant Staphylococcus aureus . . Lancet 357:, 1225–1240. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kwan T. , Liu J. , DuBow M. , Gros P. , Pelletier J. . ( 2005; ). The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. . Proc Natl Acad Sci U S A 102:, 5174–5179. [CrossRef] [PubMed]
    [Google Scholar]
  25. Lagesen K. , Hallin P. , Rødland E. A. , Staerfeldt H. H. , Rognes T. , Ussery D. W. . ( 2007; ). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. . Nucleic Acids Res 35:, 3100–3108. [CrossRef] [PubMed]
    [Google Scholar]
  26. Landthaler M. , Shub D. A. . ( 1999; ). Unexpected abundance of self-splicing introns in the genome of bacteriophage Twort: introns in multiple genes, a single gene with three introns, and exon skipping by group I ribozymes. . Proc Natl Acad Sci U S A 96:, 7005–7010. [CrossRef] [PubMed]
    [Google Scholar]
  27. Landthaler M. , Begley U. , Lau N. C. , Shub D. A. . ( 2002; ). Two self-splicing group I introns in the ribonucleotide reductase large subunit gene of Staphylococcus aureus phage Twort. . Nucleic Acids Res 30:, 1935–1943. [CrossRef] [PubMed]
    [Google Scholar]
  28. Lavigne R. , Noben J. P. , Hertveldt K. , Ceyssens P.-J. , Briers Y. , Dumont D. , Roucourt B. , Krylov V. N. , Mesyanzhinov V. V. . & other authors ( 2006; ). The structural proteome of Pseudomonas aeruginosa bacteriophage phiKMV. . Microbiology 152:, 529–534. [CrossRef] [PubMed]
    [Google Scholar]
  29. Lavigne R. , Seto D. , Mahadevan P. , Ackermann H.-W. , Kropinski A. M. . ( 2008; ). Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using blastp-based tools. . Res Microbiol 159:, 406–414. [CrossRef] [PubMed]
    [Google Scholar]
  30. Lavigne R. , Darius P. , Summer E. J. , Seto D. , Mahadevan P. , Nilsson A. S. , Ackermann H.W. , Kropinski A. M. . ( 2009; ). Classification of Myoviridae bacteriophages using protein sequence similarity. . BMC Microbiol 9:, 224. [CrossRef] [PubMed]
    [Google Scholar]
  31. Lawrence J. G. , Hatfull G. F. , Hendrix R. W. . ( 2002; ). Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. . J Bacteriol 184:, 4891–4905. [CrossRef] [PubMed]
    [Google Scholar]
  32. Lee C. Y. , Iandolo J. J. . ( 1986; ). Lysogenic conversion of staphylococcal lipase is caused by insertion of the bacteriophage L54a genome into the lipase structural gene. . J Bacteriol 166:, 385–391.[PubMed]
    [Google Scholar]
  33. Lowe T. M. , Eddy S. R. . ( 1997; ). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. . Nucleic Acids Res 25:, 955–964.[PubMed] [CrossRef]
    [Google Scholar]
  34. O’Flaherty S. , Coffey A. , Edwards R. , Meaney W. , Fitzgerald G. F. , Ross R. P. . ( 2004; ). Genome of staphylococcal phage K: a new lineage of Myoviridae infecting Gram-positive bacteria with a low G+C content. . J Bacteriol 186:, 2862–2871. [CrossRef] [PubMed]
    [Google Scholar]
  35. Pantůcek R. , Rosypalová A. , Doskar J. , Kailerová J. , Růzicková V. , Borecká P. , Snopková S. , Horváth R. , Götz F. , Rosypal S. . ( 1998; ). The polyvalent staphylococcal phage φ812: its host-range mutants and related phages. . Virology 246:, 241–252. [CrossRef] [PubMed]
    [Google Scholar]
  36. Paulus H. . ( 2000; ). Protein splicing and related forms of protein autoprocessing. . Annu Rev Biochem 69:, 447–496. [CrossRef] [PubMed]
    [Google Scholar]
  37. Rees P. J. , Fry B. A. . ( 1981; ). The morphology of staphylococcal bacteriophage K and DNA metabolism in infected Staphylococcus aureus . . J Gen Virol 53:, 293–307. [CrossRef] [PubMed]
    [Google Scholar]
  38. Rocha E. P. , Danchin A. . ( 2002; ). Base composition bias might result from competition for metabolic resources. . Trends Genet 18:, 291–294. [CrossRef] [PubMed]
    [Google Scholar]
  39. Rohwer F. , Edwards R. . ( 2002; ). The Phage Proteomic Tree: a genome-based taxonomy for phage. . J Bacteriol 184:, 4529–4535. [CrossRef] [PubMed]
    [Google Scholar]
  40. Sambrook J. , Russell D. W. . ( 2006; ). Precipitation of bacteriophage λ particles from large-scale lysates. CSH Protoc 2006(1), pii: pdb.prot3966.
  41. Santos S. B. , Kropinski A. M. , Ceyssens P.-J. , Ackermann H.-W. , Villegas A. , Lavigne R. , Krylov V. N. , Carvalho C. M. , Ferreira E. C. , Azeredo J. . ( 2011; ). Genomic and proteomic characterization of the broad-host-range Salmonella phage PVP-SE1: creation of a new phage genus. . J Virol 85:, 11265–11273. [CrossRef] [PubMed]
    [Google Scholar]
  42. Shevchenko A. , Wilm M. , Vorm O. , Jensen O. N. , Podtelejnikov A. V. , Neubauer G. , Shevchenko A. , Mortensen P. , Mann M. . ( 1996; ). A strategy for identifying gel-separated proteins in sequence databases by MS alone. . Biochem Soc Trans 24:, 893–896.[PubMed]
    [Google Scholar]
  43. Shub D. A. , Goodrich-Blair H. , Eddy S. R. . ( 1994; ). Amino acid sequence motif of group I intron endonucleases is conserved in open reading frames of group II introns. . Trends Biochem Sci 19:, 402–404. [CrossRef] [PubMed]
    [Google Scholar]
  44. Sussenbach J. S. , Monfoort C. H. , Schiphof R. , Stobberingh E. E. . ( 1976; ). A restriction endonuclease from Staphylococcus aureus . . Nucleic Acids Res 3:, 3193–3202. [CrossRef] [PubMed]
    [Google Scholar]
  45. Sussenbach J. S. , Steenbergh P. H. , Rost J. A. , van Leeuwen W. J. , van Embden J. D. . ( 1978; ). A second site-specific restriction endonuclease from Staphylococcus aureus . . Nucleic Acids Res 5:, 1153–1163. [CrossRef] [PubMed]
    [Google Scholar]
  46. Tormo-Más M. A. , Mir I. , Shrestha A. , Tallent S. M. , Campoy S. , Lasa I. , Barbé J. , Novick R. P. , Christie G. E. , Penadés J. R. . ( 2010; ). Moonlighting bacteriophage proteins derepress staphylococcal pathogenicity islands. . Nature 465:, 779–782. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.049197-0
Loading
/content/journal/jgv/10.1099/vir.0.049197-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error