1887

Abstract

Phage GH15 is a polyvalent phage that shows activity against a wide range of strains. This study analysed the genome of GH15. The genome size of GH15 (139 806 bp) was found to be larger than that of the known staphylococcal phages, and the G+C content (30.23 mol%) of GH15 was lower than that of any other staphylococcal myovirus phages. By mass spectrometry, ten structural proteins were identified. Analysis revealed that GH15 was closely related to phages G1, ISP, A5W, Sb-1 and K, and was moderately related to Twort. In light of the variability in identity, coverage, G+C content and genome size, coupled with the large number of mosaicisms, there certainly were close evolutionary relationships from K to Sb-1, A5W, ISP, G1 and finally GH15. Interestingly, all the introns and inteins present in the above phages were absent in GH15 and there appeared to be intron loss in GH15 compared with the intron gain seen in other phages. A comparison of the intron- and intein-related genes demonstrated a clear distinction in the location of the insertion site between intron-containing and intron-free alleles, and this might lead to the establishment of a consensus sequence associated with the presence of an intron or intein. The comparative analysis of the GH15 genome sequence with other phages not only provides compelling evidence for the diversity of staphylococcal myovirus phages but also offers new clues to intron shift in phages.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.049197-0
2013-04-01
2021-10-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/4/906.html?itemId=/content/journal/jgv/10.1099/vir.0.049197-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  3. Bailly-Bechet M., Vergassola M., Rocha E. 2007; Causes for the intriguing presence of tRNAs in phages. Genome Res 17:1486–1495 [View Article][PubMed]
    [Google Scholar]
  4. Besemer J., Lomsadze A., Borodovsky M. 2001; GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618 [View Article][PubMed]
    [Google Scholar]
  5. Carver T., Berriman M., Tivey A., Patel C., Böhme U., Barrell B. G., Parkhill J., Rajandream M. A. 2008; Artemis and act: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24:2672–2676 [View Article][PubMed]
    [Google Scholar]
  6. Cech T. R. 1990; Self-splicing of group I introns. Annu Rev Biochem 59:543–568 [View Article][PubMed]
    [Google Scholar]
  7. Chevalier B. S., Stoddard B. L. 2001; Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 29:3757–3774 [View Article][PubMed]
    [Google Scholar]
  8. Coulombe-Huntington J., Majewski J. 2007; Characterization of intron loss events in mammals. Genome Res 17:23–32 [View Article][PubMed]
    [Google Scholar]
  9. Darnell J. E., Doolittle W. F. 1986; Speculations on the early course of evolution. Proc Natl Acad Sci U S A 83:1271–1275 [View Article][PubMed]
    [Google Scholar]
  10. Edgell D. R., Belfort M., Shub D. A. 2000; Barriers to intron promiscuity in bacteria. J Bacteriol 182:5281–5289 [View Article][PubMed]
    [Google Scholar]
  11. Foley S., Bruttin A., Brüssow H. 2000; Widespread distribution of a group I intron and its three deletion derivatives in the lysin gene of Streptococcus thermophilus bacteriophages. J Virol 74:611–618 [View Article][PubMed]
    [Google Scholar]
  12. Gill S. R., Fouts D. E., Archer G. L., Mongodin E. F., Deboy R. T., Ravel J., Paulsen I. T., Kolonay J. F., Brinkac L. other authors 2005; Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187:2426–2438 [View Article][PubMed]
    [Google Scholar]
  13. Goerke C., Pantucek R., Holtfreter S., Schulte B., Zink M., Grumann D., Bröker B. M., Doskar J., Wolz C. 2009; Diversity of prophages in dominant Staphylococcus aureus clonal lineages. J Bacteriol 191:3462–3468 [View Article][PubMed]
    [Google Scholar]
  14. Grant J. R., Stothard P. 2008; The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36:Web Server issueW181–W184 [View Article][PubMed]
    [Google Scholar]
  15. Gu J., Lu R., Liu X., Han W., Lei L., Gao Y., Zhao H., Li Y., Diao Y. 2011a; LysGH15B, the SH3b domain of staphylococcal phage endolysin LysGH15, retains high affinity to staphylococci. Curr Microbiol 63:538–542 [View Article][PubMed]
    [Google Scholar]
  16. Gu J., Xu W., Lei L., Huang J., Feng X., Sun C., Du C., Zuo J., Li Y. other authors 2011b; LysGH15, a novel bacteriophage lysin, protects a murine bacteremia model efficiently against lethal methicillin-resistant Staphylococcus aureus infection. J Clin Microbiol 49:111–117 [View Article][PubMed]
    [Google Scholar]
  17. Gu J., Zuo J., Lei L., Zhao H., Sun C., Feng X., Du C., Li X., Yang Y., Han W. 2011c; LysGH15 reduces the inflammation caused by lethal methicillin-resistant Staphylococcus aureus infection in mice. Bioeng Bugs 2:96–99 [View Article][PubMed]
    [Google Scholar]
  18. Gu J., Liu X., Lu R., Li Y., Song J., Lei L., Sun C., Feng X., Du C. other authors 2012; Complete genome sequence of Staphylococcus aureus bacteriophage GH15. J Virol 86:8914–8915 [View Article][PubMed]
    [Google Scholar]
  19. Haugen P., Simon D. M., Bhattacharya D. 2005; The natural history of group I introns. Trends Genet 21:111–119 [View Article][PubMed]
    [Google Scholar]
  20. Hendrix R. W. 2003; Bacteriophage genomics. Curr Opin Microbiol 6:506–511 [View Article][PubMed]
    [Google Scholar]
  21. Hendrix R. W., Hatfull G. F., Smith M. C. 2003; Bacteriophages with tails: chasing their origins and evolution. Res Microbiol 154:253–257 [View Article][PubMed]
    [Google Scholar]
  22. Krupovic M., Prangishvili D., Hendrix R. W., Bamford D. H. 2011; Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev 75:610–635 [View Article][PubMed]
    [Google Scholar]
  23. Kuroda M., Ohta T., Uchiyama I., Baba T., Yuzawa H., Kobayashi I., Cui L., Oguchi A., Aoki K. other authors 2001; Whole genome sequencing of meticillin-resistant Staphylococcus aureus . Lancet 357:1225–1240 [View Article][PubMed]
    [Google Scholar]
  24. Kwan T., Liu J., DuBow M., Gros P., Pelletier J. 2005; The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci U S A 102:5174–5179 [View Article][PubMed]
    [Google Scholar]
  25. Lagesen K., Hallin P., Rødland E. A., Staerfeldt H. H., Rognes T., Ussery D. W. 2007; RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  26. Landthaler M., Shub D. A. 1999; Unexpected abundance of self-splicing introns in the genome of bacteriophage Twort: introns in multiple genes, a single gene with three introns, and exon skipping by group I ribozymes. Proc Natl Acad Sci U S A 96:7005–7010 [View Article][PubMed]
    [Google Scholar]
  27. Landthaler M., Begley U., Lau N. C., Shub D. A. 2002; Two self-splicing group I introns in the ribonucleotide reductase large subunit gene of Staphylococcus aureus phage Twort. Nucleic Acids Res 30:1935–1943 [View Article][PubMed]
    [Google Scholar]
  28. Lavigne R., Noben J. P., Hertveldt K., Ceyssens P.-J., Briers Y., Dumont D., Roucourt B., Krylov V. N., Mesyanzhinov V. V. other authors 2006; The structural proteome of Pseudomonas aeruginosa bacteriophage phiKMV. Microbiology 152:529–534 [View Article][PubMed]
    [Google Scholar]
  29. Lavigne R., Seto D., Mahadevan P., Ackermann H.-W., Kropinski A. M. 2008; Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using blastp-based tools. Res Microbiol 159:406–414 [View Article][PubMed]
    [Google Scholar]
  30. Lavigne R., Darius P., Summer E. J., Seto D., Mahadevan P., Nilsson A. S., Ackermann H.W., Kropinski A. M. 2009; Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 9:224 [View Article][PubMed]
    [Google Scholar]
  31. Lawrence J. G., Hatfull G. F., Hendrix R. W. 2002; Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J Bacteriol 184:4891–4905 [View Article][PubMed]
    [Google Scholar]
  32. Lee C. Y., Iandolo J. J. 1986; Lysogenic conversion of staphylococcal lipase is caused by insertion of the bacteriophage L54a genome into the lipase structural gene. J Bacteriol 166:385–391[PubMed]
    [Google Scholar]
  33. Lowe T. M., Eddy S. R. 1997; tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964[PubMed] [CrossRef]
    [Google Scholar]
  34. O’Flaherty S., Coffey A., Edwards R., Meaney W., Fitzgerald G. F., Ross R. P. 2004; Genome of staphylococcal phage K: a new lineage of Myoviridae infecting Gram-positive bacteria with a low G+C content. J Bacteriol 186:2862–2871 [View Article][PubMed]
    [Google Scholar]
  35. Pantůcek R., Rosypalová A., Doskar J., Kailerová J., Růzicková V., Borecká P., Snopková S., Horváth R., Götz F., Rosypal S. 1998; The polyvalent staphylococcal phage φ812: its host-range mutants and related phages. Virology 246:241–252 [View Article][PubMed]
    [Google Scholar]
  36. Paulus H. 2000; Protein splicing and related forms of protein autoprocessing. Annu Rev Biochem 69:447–496 [View Article][PubMed]
    [Google Scholar]
  37. Rees P. J., Fry B. A. 1981; The morphology of staphylococcal bacteriophage K and DNA metabolism in infected Staphylococcus aureus . J Gen Virol 53:293–307 [View Article][PubMed]
    [Google Scholar]
  38. Rocha E. P., Danchin A. 2002; Base composition bias might result from competition for metabolic resources. Trends Genet 18:291–294 [View Article][PubMed]
    [Google Scholar]
  39. Rohwer F., Edwards R. 2002; The Phage Proteomic Tree: a genome-based taxonomy for phage. J Bacteriol 184:4529–4535 [View Article][PubMed]
    [Google Scholar]
  40. Sambrook J., Russell D. W. 2006 Precipitation of bacteriophage λ particles from large-scale lysates. CSH Protoc 2006(1), pii: pdb.prot3966
  41. Santos S. B., Kropinski A. M., Ceyssens P.-J., Ackermann H.-W., Villegas A., Lavigne R., Krylov V. N., Carvalho C. M., Ferreira E. C., Azeredo J. 2011; Genomic and proteomic characterization of the broad-host-range Salmonella phage PVP-SE1: creation of a new phage genus. J Virol 85:11265–11273 [View Article][PubMed]
    [Google Scholar]
  42. Shevchenko A., Wilm M., Vorm O., Jensen O. N., Podtelejnikov A. V., Neubauer G., Shevchenko A., Mortensen P., Mann M. 1996; A strategy for identifying gel-separated proteins in sequence databases by MS alone. Biochem Soc Trans 24:893–896[PubMed]
    [Google Scholar]
  43. Shub D. A., Goodrich-Blair H., Eddy S. R. 1994; Amino acid sequence motif of group I intron endonucleases is conserved in open reading frames of group II introns. Trends Biochem Sci 19:402–404 [View Article][PubMed]
    [Google Scholar]
  44. Sussenbach J. S., Monfoort C. H., Schiphof R., Stobberingh E. E. 1976; A restriction endonuclease from Staphylococcus aureus . Nucleic Acids Res 3:3193–3202 [View Article][PubMed]
    [Google Scholar]
  45. Sussenbach J. S., Steenbergh P. H., Rost J. A., van Leeuwen W. J., van Embden J. D. 1978; A second site-specific restriction endonuclease from Staphylococcus aureus . Nucleic Acids Res 5:1153–1163 [View Article][PubMed]
    [Google Scholar]
  46. Tormo-Más M. A., Mir I., Shrestha A., Tallent S. M., Campoy S., Lasa I., Barbé J., Novick R. P., Christie G. E., Penadés J. R. 2010; Moonlighting bacteriophage proteins derepress staphylococcal pathogenicity islands. Nature 465:779–782 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.049197-0
Loading
/content/journal/jgv/10.1099/vir.0.049197-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error