1887

Abstract

European bat lyssaviruses type 1 (EBLV-1) and type 2 (EBLV-2) circulate within bat populations throughout Europe and are capable of causing disease indistinguishable from that caused by classical rabies virus (RABV). However, the determinants of viral fitness and pathogenicity are poorly understood. Full-length genome clones based on the highly attenuated, non-neuroinvasive, RABV vaccine strain (SAD-B19) were constructed with the glycoprotein (G) of either SAD-B19 (SN), of EBLV-1 (SN-1) or EBLV-2 (SN-2). characterization of SN-1 and SN-2 in comparison to wild-type EBLVs demonstrated that the substitution of G affected the final virus titre and antigenicity. , following peripheral infection with a high viral dose (10 f.f.u.), animals infected with SN-1 had reduced survivorship relative to infection with SN, resulting in survivorship similar to animals infected with EBLV-1. The histopathological changes and antigen distribution observed for SN-1 were more representative of those observed with SN than with EBLV-1. EBLV-2 was unable to achieve a titre equivalent to that of the other viruses. Therefore, a reduced-dose experiment (10 f.f.u.) was undertaken to compare EBLV-2 and SN-2, which resulted in 100 % survivorship for all recombinant viruses (SN, SN-1 and SN-2) while clinical disease developed in mice infected with the EBLVs. These data indicate that interspecies replacement of G has an effect on virus titre , probably as a result of suboptimal G–matrix protein interactions, and influences the survival outcome following a peripheral challenge with a high virus titre in mice.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.048827-0
2013-02-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/2/284.html?itemId=/content/journal/jgv/10.1099/vir.0.048827-0&mimeType=html&fmt=ahah

References

  1. Amengual B., Whitby J. E., King A., Cobo J. S., Bourhy H. 1997; Evolution of European bat lyssaviruses. J Gen Virol 78:2319–2328[PubMed]
    [Google Scholar]
  2. Blaney J. E., Wirblich C., Papaneri A. B., Johnson R. F., Myers C. J., Juelich T. L., Holbrook M. R., Freiberg A. N., Bernbaum J. G. other authors 2011; Inactivated or live-attenuated bivalent vaccines that confer protection against rabies and Ebola viruses. J Virol 85:10605–10616 [View Article][PubMed]
    [Google Scholar]
  3. Brookes S. M., Aegerter J. N., Smith G. C., Healy D. M., Jolliffe T. A., Swift S. M., Mackie I. J., Pritchard J. S., Racey P. A. other authors 2005; European bat lyssavirus in Scottish bats. Emerg Infect Dis 11:572–578 [View Article][PubMed]
    [Google Scholar]
  4. Buchholz U. J., Finke S., Conzelmann K. K. 1999; Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73:251–259[PubMed]
    [Google Scholar]
  5. Cenna J., Tan G. S., Papaneri A. B., Dietzschold B., Schnell M. J., McGettigan J. P. 2008; Immune modulating effect by a phosphoprotein-deleted rabies virus vaccine vector expressing two copies of the rabies virus glycoprotein gene. Vaccine 26:6405–6414 [View Article][PubMed]
    [Google Scholar]
  6. Cliquet F., Aubert M., Sagné L. 1998; Development of a fluorescent antibody virus neutralisation test (FAVN test) for the quantitation of rabies-neutralising antibody. J Immunol Methods 212:79–87 [View Article][PubMed]
    [Google Scholar]
  7. Cox J. H., Dietzschold B., Schneider L. G. 1977; Rabies virus glycoprotein. II. Biological and serological characterization. Infect Immun 16:754–759[PubMed]
    [Google Scholar]
  8. Echevarría J. E., Avellón A., Juste J., Vera M., Ibáñez C. 2001; Screening of active lyssavirus infection in wild bat populations by viral RNA detection on oropharyngeal swabs. J Clin Microbiol 39:3678–3683 [View Article][PubMed]
    [Google Scholar]
  9. Etessami R., Conzelmann K. K., Fadai-Ghotbi B., Natelson B., Tsiang H., Ceccaldi P. E. 2000; Spread and pathogenic characteristics of a G-deficient rabies virus recombinant: an in vitro and in vivo study. J Gen Virol 81:2147–2153[PubMed]
    [Google Scholar]
  10. Faber M., Pulmanausahakul R., Nagao K., Prosniak M., Rice A. B., Koprowski H., Schnell M. J., Dietzschold B. 2004; Identification of viral genomic elements responsible for rabies virus neuroinvasiveness. Proc Natl Acad Sci U S A 101:16328–16332 [View Article][PubMed]
    [Google Scholar]
  11. Faber M., Faber M. L., Papaneri A., Bette M., Weihe E., Dietzschold B., Schnell M. J. 2005a; A single amino acid change in rabies virus glycoprotein increases virus spread and enhances virus pathogenicity. J Virol 79:14141–14148 [View Article][PubMed]
    [Google Scholar]
  12. Faber M., Bette M., Preuss M. A., Pulmanausahakul R., Rehnelt J., Schnell M. J., Dietzschold B., Weihe E. 2005b; Overexpression of tumor necrosis factor alpha by a recombinant rabies virus attenuates replication in neurons and prevents lethal infection in mice. J Virol 79:15405–15416 [View Article][PubMed]
    [Google Scholar]
  13. Faber M., Faber M. L., Li J., Preuss M. A., Schnell M. J., Dietzschold B. 2007; Dominance of a nonpathogenic glycoprotein gene over a pathogenic glycoprotein gene in rabies virus. J Virol 81:7041–7047 [View Article][PubMed]
    [Google Scholar]
  14. Faul E. J., Wanjalla C. N., McGettigan J. P., Schnell M. J. 2008; Interferon-beta expressed by a rabies virus-based HIV-1 vaccine vector serves as a molecular adjuvant and decreases pathogenicity. Virology 382:226–238 [View Article][PubMed]
    [Google Scholar]
  15. Faul E. J., Aye P. P., Papaneri A. B., Pahar B., McGettigan J. P., Schiro F., Chervoneva I., Montefiori D. C., Lackner A. A., Schnell M. J. 2009; Rabies virus-based vaccines elicit neutralizing antibodies, poly-functional CD8+ T cell, and protect rhesus macaques from AIDS-like disease after SIV(mac251) challenge. Vaccine 28:299–308 [View Article][PubMed]
    [Google Scholar]
  16. Finke S., Conzelmann K. K. 1999; Virus promoters determine interference by defective RNAs: selective amplification of mini-RNA vectors and rescue from cDNA by a 3′ copy-back ambisense rabies virus. J Virol 73:3818–3825[PubMed]
    [Google Scholar]
  17. Finke S., Brzózka K., Conzelmann K. K. 2004; Tracking fluorescence-labeled rabies virus: enhanced green fluorescent protein-tagged phosphoprotein P supports virus gene expression and formation of infectious particles. J Virol 78:12333–12343 [View Article][PubMed]
    [Google Scholar]
  18. Fooks A. R., McElhinney L. M., Pounder D. J., Finnegan C. J., Mansfield K., Johnson N., Brookes S. M., Parsons G., White K. other authors 2003; Case report: isolation of a European bat lyssavirus type 2a from a fatal human case of rabies encephalitis. J Med Virol 71:281–289 [View Article][PubMed]
    [Google Scholar]
  19. Fooks A. R., McElhinney L. M., Marston D. A., Selden D., Jolliffe T. A., Wakeley P. R., Johnson N., Brookes S. M. 2004; Identification of a European bat lyssavirus type 2 in a Daubenton’s bat found in Staines, Surrey, UK. Vet Rec 155:434–435[PubMed]
    [Google Scholar]
  20. Genz B., Nolden T., Negatsch A., Teifke J. P., Conzelmann K. K., Finke S. 2012; Chimeric rabies viruses for trans-species comparison of lyssavirus glycoprotein ectodomain functions in virus replication and pathogenesis. Berl Munch Tierarztl Wochenschr 125:219–227[PubMed]
    [Google Scholar]
  21. Harris S. L., Aegerter J. N., Brookes S. M., McElhinney L. M., Jones G., Smith G. C., Fooks A. R. 2009; Targeted surveillance for European bat lyssaviruses in English bats (2003–06). J Wildl Dis 45:1030–1041[PubMed] [CrossRef]
    [Google Scholar]
  22. Hicks D. J., Nuñez A., Healy D. M., Brookes S. M., Johnson N., Fooks A. R. 2009; Comparative pathological study of the murine brain after experimental infection with classical rabies virus and European bat lyssaviruses. J Comp Pathol 140:113–126 [View Article][PubMed]
    [Google Scholar]
  23. Horton D. L., Voller K., Haxton B., Johnson N., Leech S., Goddard T., Wilson C., McElhinney L. M., Fooks A. R. 2009; European bat lyssavirus type 2 in a Daubenton’s bat in Scotland. Vet Rec 165:383–384 [View Article][PubMed]
    [Google Scholar]
  24. Horton D. L., McElhinney L. M., Marston D. A., Wood J. L., Russell C. A., Lewis N., Kuzmin I. V., Fouchier R. A., Osterhaus A. D. other authors 2010; Quantifying antigenic relationships among the lyssaviruses. J Virol 84:11841–11848 [View Article][PubMed]
    [Google Scholar]
  25. Klingen Y., Conzelmann K. K., Finke S. 2008; Double-labeled rabies virus: live tracking of enveloped virus transport. J Virol 82:237–245 [View Article][PubMed]
    [Google Scholar]
  26. Lawson N. D., Stillman E. A., Whitt M. A., Rose J. K. 1995; Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci U S A 92:4477–4481 [View Article][PubMed]
    [Google Scholar]
  27. Marston D. A., McElhinney L. M., Johnson N., Müller T., Conzelmann K. K., Tordo N., Fooks A. R. 2007; Comparative analysis of the full genome sequence of European bat lyssavirus type 1 and type 2 with other lyssaviruses and evidence for a conserved transcription termination and polyadenylation motif in the G-L 3′ non-translated region. J Gen Virol 88:1302–1314 [View Article][PubMed]
    [Google Scholar]
  28. McElhinney L. M., Marston D. A., Leech S., Freuling C. M., van der Poel W. H., Echevarria J., Vázquez-Moron S., Horton D. L., Müller T., Fooks A. R. 2012; Molecular epidemiology of bat lyssaviruses in Europe. Zoonoses Public Health in press [View Article][PubMed]
    [Google Scholar]
  29. McGettigan J. P., Foley H. D., Belyakov I. M., Berzofsky J. A., Pomerantz R. J., Schnell M. J. 2001; Rabies virus-based vectors expressing human immunodeficiency virus type 1 (HIV-1) envelope protein induce a strong, cross-reactive cytotoxic T-lymphocyte response against envelope proteins from different HIV-1 isolates. J Virol 75:4430–4434 [View Article][PubMed]
    [Google Scholar]
  30. McGettigan J. P., Pomerantz R. J., Siler C. A., McKenna P. M., Foley H. D., Dietzschold B., Schnell M. J. 2003; Second-generation rabies virus-based vaccine vectors expressing human immunodeficiency virus type 1 gag have greatly reduced pathogenicity but are highly immunogenic. J Virol 77:237–244 [View Article][PubMed]
    [Google Scholar]
  31. McKenna P. M., Aye P. P., Dietzschold B., Montefiori D. C., Martin L. N., Marx P. A., Pomerantz R. J., Lackner A., Schnell M. J. 2004; Immunogenicity study of glycoprotein-deficient rabies virus expressing simian/human immunodeficiency virus SHIV89.6P envelope in a rhesus macaque. J Virol 78:13455–13459 [View Article][PubMed]
    [Google Scholar]
  32. Mebatsion T., Konig M., Conzelmann K. K. 1996; Budding of rabies virus particles in the absence of the spike glycoprotein. Cell 84:941–951 [View Article][PubMed]
    [Google Scholar]
  33. Mebatsion T., Weiland F., Conzelmann K. K. 1999; Matrix protein of rabies virus is responsible for the assembly and budding of bullet-shaped particles and interacts with the transmembrane spike glycoprotein G. J Virol 73:242–250[PubMed]
    [Google Scholar]
  34. Morimoto K., Hooper D. C., Spitsin S., Koprowski H., Dietzschold B. 1999; Pathogenicity of different rabies virus variants inversely correlates with apoptosis and rabies virus glycoprotein expression in infected primary neuron cultures. J Virol 73:510–518[PubMed]
    [Google Scholar]
  35. Morimoto K., Foley H. D., McGettigan J. P., Schnell M. J., Dietzschold B. 2000; Reinvestigation of the role of the rabies virus glycoprotein in viral pathogenesis using a reverse genetics approach. J Neurovirol 6:373–381 [View Article][PubMed]
    [Google Scholar]
  36. Müller T., Johnson N., Freuling C. M., Fooks A. R., Selhorst T., Vos A. 2007; Epidemiology of bat rabies in Germany. Arch Virol 152:273–288 [View Article][PubMed]
    [Google Scholar]
  37. Orbanz J., Finke S. 2010; Generation of recombinant European bat lyssavirus type 1 and inter-genotypic compatibility of lyssavirus genotype 1 and 5 antigenome promoters. Arch Virol 155:1631–1641 [View Article][PubMed]
    [Google Scholar]
  38. Préhaud C., Wolff N., Terrien E., Lafage M., Mégret F., Babault N., Cordier F., Tan G. S., Maitrepierre E. other authors 2010; Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein. Sci Signal 3:ra5 [View Article][PubMed]
    [Google Scholar]
  39. Pulmanausahakul R., Li J., Schnell M. J., Dietzschold B. 2008; The glycoprotein and the matrix protein of rabies virus affect pathogenicity by regulating viral replication and facilitating cell-to-cell spread. J Virol 82:2330–2338 [View Article][PubMed]
    [Google Scholar]
  40. Schnell M. J., Mebatsion T., Conzelmann K. K. 1994; Infectious rabies viruses from cloned cDNA. EMBO J 13:4195–4203[PubMed]
    [Google Scholar]
  41. Serra-Cobo J., Amengual B., Abellán C., Bourhy H. 2002; European bat lyssavirus infection in Spanish bat populations. Emerg Infect Dis 8:413–420 [View Article][PubMed]
    [Google Scholar]
  42. Siler C. A., McGettigan J. P., Dietzschold B., Herrine S. K., Dubuisson J., Pomerantz R. J., Schnell M. J. 2002; Live and killed rhabdovirus-based vectors as potential hepatitis C vaccines. Virology 292:24–34 [View Article][PubMed]
    [Google Scholar]
  43. Smith D. J., Lapedes A. S., de Jong J. C., Bestebroer T. M., Rimmelzwaan G. F., Osterhaus A. D., Fouchier R. A. 2004; Mapping the antigenic and genetic evolution of influenza virus. Science 305:371–376 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.048827-0
Loading
/content/journal/jgv/10.1099/vir.0.048827-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error