1887

Abstract

We previously showed that the movement protein (MP) gene of (AMV) is functionally exchangeable for the cell-to-cell transport of the corresponding genes of (TMV), , , and . We have analysed the capacity of the heterologous MPs to systemically transport the corresponding chimeric AMV genome. All MPs were competent in systemic transport but required the fusion at their C terminus of the coat protein-interacting C-terminal 44 aa (A44) of the AMV MP. Except for the TMV MP, the presence of the hybrid virus in upper leaves correlated with the capacity to move locally. These results suggest that all the MPs assigned to the 30K superfamily should be exchangeable not only for local virus movement but also for systemic transport when the A44 fragment is present.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.048793-0
2013-03-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/3/677.html?itemId=/content/journal/jgv/10.1099/vir.0.048793-0&mimeType=html&fmt=ahah

References

  1. Aparicio F. , Vilar M. , Perez-Payá E. , Pallás V. . ( 2003; ). The coat protein of prunus necrotic ringspot virus specifically binds to and regulates the conformation of its genomic RNA. . Virology 313:, 213–223. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bol J. F. . ( 2008; ). Role of capsid proteins. . Methods Mol Biol 451:, 21–31. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cao M. , Ye X. , Willie K. , Lin J. , Zhang X. , Redinbaugh M. G. , Simon A. E. , Morris T. J. , Qu F. . ( 2010; ). The capsid protein of Turnip crinkle virus overcomes two separate defense barriers to facilitate systemic movement of the virus in Arabidopsis . . J Virol 84:, 7793–7802. [CrossRef] [PubMed]
    [Google Scholar]
  4. Carrington J. C. , Kasschau K. D. , Mahajan S. K. , Schaad M. C. . ( 1996; ). Cell-to-cell and long-distance transport of viruses in plants. . Plant Cell 8:, 1669–1681.[PubMed] [CrossRef]
    [Google Scholar]
  5. Cheng N. H. , Su C. L. , Carter S. A. , Nelson R. S. . ( 2000; ). Vascular invasion routes and systemic accumulation patterns of tobacco mosaic virus in Nicotiana benthamiana . . Plant J 23:, 349–362. [CrossRef] [PubMed]
    [Google Scholar]
  6. Codoñer F. M. , Cuevas J. M. , Sánchez-Navarro J. A. , Pallás V. , Elena S. F. . ( 2005; ). Molecular evolution of the plant virus family Bromoviridae based on RNA3-encoded proteins. . J Mol Evol 61:, 697–705. [CrossRef] [PubMed]
    [Google Scholar]
  7. Deom C. M. , He X. Z. , Beachy R. N. , Weissinger A. K. . ( 1994; ). Influence of heterologous tobamovirus movement protein and chimeric-movement protein genes on cell-to-cell and long-distance movement. . Virology 205:, 198–209. [CrossRef] [PubMed]
    [Google Scholar]
  8. Fernandez-Calvino L. , Faulkner C. , Walshaw J. , Saalbach G. , Bayer E. , Benitez-Alfonso Y. , Maule A. . ( 2011; ). Arabidopsis plasmodesmal proteome. . PLoS ONE 6:, e18880. [CrossRef] [PubMed]
    [Google Scholar]
  9. Hamilton A. , Voinnet O. , Chappell L. , Baulcombe D. . ( 2002; ). Two classes of short interfering RNA in RNA silencing. . EMBO J 21:, 4671–4679. [CrossRef] [PubMed]
    [Google Scholar]
  10. Herranz M. C. , Pallás V. , Aparicio F. . ( 2012; ). Multifunctional roles for the N-terminal basic motif of Alfalfa mosaic virus coat protein: nucleolar/cytoplasmic shuttling, modulation of RNA-binding activity, and virion formation. . Mol Plant Microbe Interact 25:, 1093–1103. [CrossRef] [PubMed]
    [Google Scholar]
  11. Lazarowitz S. G. , Beachy R. N. . ( 1999; ). Viral movement proteins as probes for intracellular and intercellular trafficking in plants. . Plant Cell 11:, 535–548.[PubMed] [CrossRef]
    [Google Scholar]
  12. Lucas W. J. . ( 2006; ). Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. . Virology 344:, 169–184. [CrossRef] [PubMed]
    [Google Scholar]
  13. Más P. , Pallás V. . ( 1995; ). Non-isotopic tissue-printing hybridization: a new technique to study long-distance plant virus movement. . J Virol Methods 52:, 317–326. [CrossRef] [PubMed]
    [Google Scholar]
  14. Más P. , Pallás V. . ( 1996; ). Long-distance movement of cherry leaf roll virus in infected tobacco plants. . J Gen Virol 77:, 531–540. [CrossRef] [PubMed]
    [Google Scholar]
  15. Melcher U. . ( 2000; ). The ‘30K’ superfamily of viral movement proteins. . J Gen Virol 81:, 257–266.[PubMed]
    [Google Scholar]
  16. Pallás V. , García J. A. . ( 2011; ). How do plant viruses induce disease? Interactions and interference with host components. . J Gen Virol 92:, 2691–2705. [CrossRef] [PubMed]
    [Google Scholar]
  17. Pallás V. , Genovés A. , Sánchez-Pina M. A. , Navarro J. A. . ( 2011; ). Sytemic movement of viruses via the plant phloem. . In Recent Advances in Plant Virology, pp. 75–101. Edited by Caranta C. , Aranda M. G. , Tepfer M. , López-Moya J. J. . . Norfolk, UK:: Caister Academic Press;.
    [Google Scholar]
  18. Rajamäki M. L. , Valkonen J. P. . ( 2002; ). Viral genome-linked protein (VPg) controls accumulation and phloem-loading of a potyvirus in inoculated potato leaves. . Mol Plant Microbe Interact 15:, 138–149. [CrossRef] [PubMed]
    [Google Scholar]
  19. Ritzenthaler C. , Hofmann C. . ( 2007; ). Tubule-guided movement of plant viruses. . In Viral Transport in Plants, pp. 63–83. Edited by Waigmann E. , Heinlein M. . . Berlin:: Springer;. [CrossRef]
    [Google Scholar]
  20. Sánchez-Navarro J. A. , Bol J. F. . ( 2001; ). Role of the Alfalfa mosaic virus movement protein and coat protein in virus transport. . Mol Plant Microbe Interact 14:, 1051–1062. [CrossRef] [PubMed]
    [Google Scholar]
  21. Sánchez-Navarro J. A. , Pallás V. . ( 1997; ). Evolutionary relationships in the ilarviruses: nucleotide sequence of prunus necrotic ringspot virus RNA 3. . Arch Virol 142:, 749–763. [CrossRef] [PubMed]
    [Google Scholar]
  22. Sánchez-Navarro J. A. , Reusken C. B. E. M. , Bol J. F. , Pallás V. . ( 1997; ). Replication of alfalfa mosaic virus RNA 3 with movement and coat protein genes replaced by corresponding genes of Prunus necrotic ringspot ilarvirus. . J Gen Virol 78:, 3171–3176.[PubMed]
    [Google Scholar]
  23. Sánchez-Navarro J. , Miglino R. , Ragozzino A. , Bol J. F. . ( 2001; ). Engineering of Alfalfa mosaic virus RNA 3 into an expression vector. . Arch Virol 146:, 923–939. [CrossRef] [PubMed]
    [Google Scholar]
  24. Sánchez-Navarro J. A. , Carmen Herranz M. , Pallás V. . ( 2006; ). Cell-to-cell movement of Alfalfa mosaic virus can be mediated by the movement proteins of Ilar-, bromo-, cucumo-, tobamo- and comoviruses and does not require virion formation. . Virology 346:, 66–73. [CrossRef] [PubMed]
    [Google Scholar]
  25. Sánchez-Navarro J. , Fajardo T. , Zicca S. , Pallás V. , Stavolone L. . ( 2010; ). Caulimoviridae tubule-guided transport is dictated by movement protein properties. . J Virol 84:, 4109–4112. [CrossRef] [PubMed]
    [Google Scholar]
  26. Schwach F. , Vaistij F. E. , Jones L. , Baulcombe D. C. . ( 2005; ). An RNA-dependent RNA polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal. . Plant Physiol 138:, 1842–1852. [CrossRef] [PubMed]
    [Google Scholar]
  27. Taschner P. E. , Van der Kuyl A. C. , Neeleman L. , Bol J. F. . ( 1991; ). Replication of an incomplete alfalfa mosaic virus genome in plants transformed with viral replicase genes. . Virology 181:, 445–450. [CrossRef] [PubMed]
    [Google Scholar]
  28. Tenllado F. , Bol J. F. . ( 2000; ). Genetic dissection of the multiple functions of alfalfa mosaic virus coat protein in viral RNA replication, encapsidation, and movement. . Virology 268:, 29–40. [CrossRef] [PubMed]
    [Google Scholar]
  29. Traynor P. , Young B. M. , Ahlquist P. . ( 1991; ). Deletion analysis of brome mosaic virus 2a protein: effects on RNA replication and systemic spread. . J Virol 65:, 2807–2815.[PubMed]
    [Google Scholar]
  30. Ueki S. , Citovsky V. . ( 2007; ). Spread throughout the plant: systemic transport of viruses. . In Viral Transport in Plants, pp. 85–118. Edited by Waigmann E. , Heinlein M. . . Berlin:: Springer;. [CrossRef]
    [Google Scholar]
  31. Van der Vossen E. A. , Neeleman L. , Bol J. F. . ( 1993; ). Role of the 5′ leader sequence of alfalfa mosaic virus RNA 3 in replication and translation of the viral RNA. . Nucleic Acids Res 21:, 1361–1367. [CrossRef] [PubMed]
    [Google Scholar]
  32. Waigmann E. , Ueki S. , Trutnyeva K. , Citovsky V. . ( 2004; ). The ins and outs of nondestructive cell-to-cell and systemic movement of plant viruses. . Crit Rev Plant Sci 23:, 195–250. [CrossRef]
    [Google Scholar]
  33. Waigmann E. , Curin M. , Heinlein M. . ( 2007; ). Tobacco mosaic virus – a model for macromolecular cell-to-cell spread. . In Viral Transport in Plants, pp. 29–62. Edited by Waigmann E. , Heinlein M. . . Berlin:: Springer;. [CrossRef]
    [Google Scholar]
  34. Wintermantel W. M. , Banerjee N. , Oliver J. C. , Paolillo D. J. , Zaitlin M. . ( 1997; ). Cucumber mosaic virus is restricted from entering minor veins in transgenic tobacco exhibiting replicase-mediated resistance. . Virology 231:, 248–257. [CrossRef] [PubMed]
    [Google Scholar]
  35. Yelina N. E. , Savenkov E. I. , Solovyev A. G. , Morozov S. Y. , Valkonen J. P. . ( 2002; ). Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in hordei- and potyviruses: complementary functions between virus families. . J Virol 76:, 12981–12991. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.048793-0
Loading
/content/journal/jgv/10.1099/vir.0.048793-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error