1887

Abstract

The ovarian tumour (OTU) domain of the nairovirus L protein has been shown to remove ubiquitin and interferon-stimulated gene 15 protein (ISG15) from host cell proteins, which is expected to have multiple effects on cell signalling pathways. We have confirmed that the OTU domain from the L protein of the apathogenic nairovirus Dugbe virus has deubiquitinating and deISGylating activity and shown that, when expressed in cells, it is highly effective at blocking the TNF-α/NF-κB and interferon/JAK/STAT signalling pathways even at low doses. Point mutations of the catalytic site of the OTU [C40A, H151A and a double mutant] both abolished the ability of the OTU domain to deubiquitinate and deISGylate proteins and greatly reduced its effect on cell signalling pathways, confirming that it is this enzymic activity that is responsible for blocking the two signalling pathways. Expression of the inactive mutants at high levels could still block signalling, suggesting that the viral OTU can still bind to its substrate even when mutated at its catalytic site. The nairovirus L protein is a very large protein that is normally confined to the cytoplasm, where the virus replicates. When the OTU domain was prevented from entering the nucleus by expressing it as part of the N-terminal 205 kDa of the viral L protein, it continued to block type I interferon signalling, but no longer blocked the TNF-α-induced activation of NF-κB.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.048322-0
2013-02-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/2/298.html?itemId=/content/journal/jgv/10.1099/vir.0.048322-0&mimeType=html&fmt=ahah

References

  1. Akutsu M. , Ye Y. , Virdee S. , Chin J. W. , Komander D. . ( 2011; ). Molecular basis for ubiquitin and ISG15 cross-reactivity in viral ovarian tumor domains. . Proc Natl Acad Sci U S A 108:, 2228–2233. [CrossRef] [PubMed]
    [Google Scholar]
  2. Andersson I. , Karlberg H. , Mousavi-Jazi M. , Martínez-Sobrido L. , Weber F. , Mirazimi A. . ( 2008; ). Crimean–Congo hemorrhagic fever virus delays activation of the innate immune response. . J Med Virol 80:, 1397–1404. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bergeron E. , Albariño C. G. , Khristova M. L. , Nichol S. T. . ( 2010; ). Crimean–Congo hemorrhagic fever virus-encoded ovarian tumor protease activity is dispensable for virus RNA polymerase function. . J Virol 84:, 216–226. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bhoj V. G. , Chen Z. J. . ( 2009; ). Ubiquitylation in innate and adaptive immunity. . Nature 458:, 430–437. [CrossRef] [PubMed]
    [Google Scholar]
  5. Blomstrom D. C. , Fahey D. , Kutny R. , Korant B. D. , Knight E. Jr . ( 1986; ). Molecular characterization of the interferon-induced 15-kDa protein. Molecular cloning and nucleotide and amino acid sequence. . J Biol Chem 261:, 8811–8816.[PubMed]
    [Google Scholar]
  6. Boyd A. , Fazakerley J. K. , Bridgen A. . ( 2006; ). Pathogenesis of Dugbe virus infection in wild-type and interferon-deficient mice. . J Gen Virol 87:, 2005–2009. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bridgen A. , Dalrymple D. A. , Elliott R. M. . ( 2002; ). Dugbe nairovirus S segment: correction of published sequence and comparison of five isolates. . Virology 294:, 364–371. [CrossRef] [PubMed]
    [Google Scholar]
  8. Burt F. J. , Spencer D. C. , Leman P. A. , Patterson B. , Swanepoel R. . ( 1996; ). Investigation of tick-borne viruses as pathogens of humans in South Africa and evidence of Dugbe virus infection in a patient with prolonged thrombocytopenia. . Epidemiol Infect 116:, 353–361. [CrossRef] [PubMed]
    [Google Scholar]
  9. Causey O. R. . ( 1970; ). Supplement to the catalogue of arthropod-borne viruses. . Am J Trop Med Hyg 19:, 1123–1124.[PubMed]
    [Google Scholar]
  10. Coates D. M. , Sweet C. . ( 1990; ). Studies on the pathogenicity of a nairovirus, Dugbe virus, in normal and immunosuppressed mice. . J Gen Virol 71:, 325–332. [CrossRef] [PubMed]
    [Google Scholar]
  11. Crabtree M. B. , Sang R. , Miller B. R. . ( 2009; ). Kupe virus, a new virus in the family Bunyaviridae, genus nairovirus, Kenya. . Emerg Infect Dis 15:, 147–154. [CrossRef] [PubMed]
    [Google Scholar]
  12. David-West T. S. , Porterfield J. S. . ( 1974; ). Dugbe virus: a tick-borne arbovirus from Nigeria. . J Gen Virol 23:, 297–307. [CrossRef] [PubMed]
    [Google Scholar]
  13. Enesa K. , Zakkar M. , Chaudhury H. , Luong A. , Rawlinson L. , Mason J. C. , Haskard D. O. , Dean J. L. , Evans P. C. . ( 2008; ). NF-κB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. . J Biol Chem 283:, 7036–7045. [CrossRef] [PubMed]
    [Google Scholar]
  14. Ergönül O. . ( 2006; ). Crimean–Congo haemorrhagic fever. . Lancet Infect Dis 6:, 203–214. [CrossRef] [PubMed]
    [Google Scholar]
  15. Farrell P. J. , Broeze R. J. , Lengyel P. . ( 1979; ). Accumulation of an mRNA and protein in interferon-treated Ehrlich ascites tumour cells. . Nature 279:, 523–525. [CrossRef] [PubMed]
    [Google Scholar]
  16. Frias-Staheli N. , Giannakopoulos N. V. , Kikkert M. , Taylor S. L. , Bridgen A. , Paragas J. , Richt J. A. , Rowland R. R. , Schmaljohn C. S. . & other authors ( 2007; ). Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. . Cell Host Microbe 2:, 404–416. [CrossRef] [PubMed]
    [Google Scholar]
  17. Haas A. L. , Ahrens P. , Bright P. M. , Ankel H. . ( 1987; ). Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. . J Biol Chem 262:, 11315–11323.[PubMed]
    [Google Scholar]
  18. Habjan M. , Andersson I. , Klingström J. , Schümann M. , Martin A. , Zimmermann P. , Wagner V. , Pichlmair A. , Schneider U. . & other authors ( 2008; ). Processing of genome 5′ termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. . PLoS ONE 3:, e2032. [CrossRef] [PubMed]
    [Google Scholar]
  19. Harty R. N. , Pitha P. M. , Okumura A. . ( 2009; ). Antiviral activity of innate immune protein ISG15. . J Innate Immun 1:, 397–404. [CrossRef] [PubMed]
    [Google Scholar]
  20. Hayden M. S. , West A. P. , Ghosh S. . ( 2006; ). NF-κB and the immune response. . Oncogene 25:, 6758–6780. [CrossRef] [PubMed]
    [Google Scholar]
  21. Holzer B. , Bakshi S. , Bridgen A. , Baron M. D. . ( 2011; ). Inhibition of interferon induction and action by the nairovirus Nairobi sheep disease virus/Ganjam virus. . PLoS ONE 6:, e28594. [CrossRef] [PubMed]
    [Google Scholar]
  22. James T. W. , Frias-Staheli N. , Bacik J. P. , Levingston Macleod J. M. , Khajehpour M. , García-Sastre A. , Mark B. L. . ( 2011; ). Structural basis for the removal of ubiquitin and interferon-stimulated gene 15 by a viral ovarian tumor domain-containing protease. . Proc Natl Acad Sci U S A 108:, 2222–2227. [CrossRef] [PubMed]
    [Google Scholar]
  23. Jeon Y. J. , Yoo H. M. , Chung C. H. . ( 2010; ). ISG15 and immune diseases. . Biochim Biophys Acta 1802:, 485–496. [CrossRef] [PubMed]
    [Google Scholar]
  24. Killip M. J. , Young D. F. , Ross C. S. , Chen S. , Goodbourn S. , Randall R. E. . ( 2011; ). Failure to activate the IFN-β promoter by a paramyxovirus lacking an interferon antagonist. . Virology 415:, 39–46. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kim M. J. , Hwang S. Y. , Imaizumi T. , Yoo J. Y. . ( 2008; ). Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. . J Virol 82:, 1474–1483. [CrossRef] [PubMed]
    [Google Scholar]
  26. Lai C. , Struckhoff J. J. , Schneider J. , Martinez-Sobrido L. , Wolff T. , García-Sastre A. , Zhang D. E. , Lenschow D. J. . ( 2009; ). Mice lacking the ISG15 E1 enzyme UbE1L demonstrate increased susceptibility to both mouse-adapted and non-mouse-adapted influenza B virus infection. . J Virol 83:, 1147–1151. [CrossRef] [PubMed]
    [Google Scholar]
  27. Lenschow D. J. , Giannakopoulos N. V. , Gunn L. J. , Johnston C. , O’Guin A. K. , Schmidt R. E. , Levine B. , Virgin H. W. IV . ( 2005; ). Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. . J Virol 79:, 13974–13983. [CrossRef] [PubMed]
    [Google Scholar]
  28. Lenschow D. J. , Lai C. , Frias-Staheli N. , Giannakopoulos N. V. , Lutz A. , Wolff T. , Osiak A. , Levine B. , Schmidt R. E. . & other authors ( 2007; ). IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. . Proc Natl Acad Sci U S A 104:, 1371–1376. [CrossRef] [PubMed]
    [Google Scholar]
  29. Lu G. , Reinert J. T. , Pitha-Rowe I. , Okumura A. , Kellum M. , Knobeloch K. P. , Hassel B. , Pitha P. M. . ( 2006; ). ISG15 enhances the innate antiviral response by inhibition of IRF-3 degradation. . Cell Mol Biol (Noisy-le-grand) 52:, 29–41.[PubMed]
    [Google Scholar]
  30. Malakhov M. P. , Malakhova O. A. , Kim K. I. , Ritchie K. J. , Zhang D. E. . ( 2002; ). UBP43 (USP18) specifically removes ISG15 from conjugated proteins. . J Biol Chem 277:, 9976–9981. [CrossRef] [PubMed]
    [Google Scholar]
  31. Malakhov M. P. , Kim K. I. , Malakhova O. A. , Jacobs B. S. , Borden E. C. , Zhang D. E. . ( 2003; ). High-throughput immunoblotting. Ubiquitiin-like protein ISG15 modifies key regulators of signal transduction. . J Biol Chem 278:, 16608–16613. [CrossRef] [PubMed]
    [Google Scholar]
  32. Malakhova O. A. , Yan M. , Malakhov M. P. , Yuan Y. , Ritchie K. J. , Kim K. I. , Peterson L. F. , Shuai K. , Zhang D. E. . ( 2003; ). Protein ISGylation modulates the JAK-STAT signaling pathway. . Genes Dev 17:, 455–460. [CrossRef] [PubMed]
    [Google Scholar]
  33. Marczinke B. I. , Nichol S. T. . ( 2002; ). Nairobi sheep disease virus, an important tick-borne pathogen of sheep and goats in Africa, is also present in Asia. . Virology 303:, 146–151. [CrossRef] [PubMed]
    [Google Scholar]
  34. Minakawa M. , Sone T. , Takeuchi T. , Yokosawa H. . ( 2008; ). Regulation of the nuclear factor (NF)-κB pathway by ISGylation. . Biol Pharm Bull 31:, 2223–2227. [CrossRef] [PubMed]
    [Google Scholar]
  35. Nanda S. K. , Baron M. D. . ( 2006; ). Rinderpest virus blocks type I and type II interferon action: role of structural and nonstructural proteins. . J Virol 80:, 7555–7568. [CrossRef] [PubMed]
    [Google Scholar]
  36. Peyrefitte C. N. , Perret M. , Garcia S. , Rodrigues R. , Bagnaud A. , Lacote S. , Crance J. M. , Vernet G. , Garin D. . & other authors ( 2010; ). Differential activation profiles of Crimean–Congo hemorrhagic fever virus- and Dugbe virus-infected antigen-presenting cells. . J Gen Virol 91:, 189–198. [CrossRef] [PubMed]
    [Google Scholar]
  37. Platanias L. C. . ( 2005; ). Mechanisms of type-I- and type-II-interferon-mediated signalling. . Nat Rev Immunol 5:, 375–386. [CrossRef] [PubMed]
    [Google Scholar]
  38. Sang R. , Onyango C. , Gachoya J. , Mabinda E. , Konongoi S. , Ofula V. , Dunster L. , Okoth F. , Coldren R. . & other authors ( 2006; ). Tickborne arbovirus surveillance in market livestock, Nairobi, Kenya. . Emerg Infect Dis 12:, 1074–1080.[PubMed] [CrossRef]
    [Google Scholar]
  39. Schmaljohn C. S. , Nichol S. T. . ( 2007; ). Bunyaviridae. . In Fields Virology, , 5th edn., pp. 1742–1789. Edited by Knipe D. M. , Howley P. M. . . Philadelphia:: Lippincott Williams and Wilkins;.
    [Google Scholar]
  40. Tamatani M. , Che Y. H. , Matsuzaki H. , Ogawa S. , Okado H. , Miyake S. , Mizuno T. , Tohyama M. . ( 1999; ). Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFκB activation in primary hippocampal neurons. . J Biol Chem 274:, 8531–8538. [CrossRef] [PubMed]
    [Google Scholar]
  41. van Kasteren P. B. , Beugeling C. , Ninaber D. K. , Frias-Staheli N. , van Boheemen S. , García-Sastre A. , Snijder E. J. , Kikkert M. . ( 2012; ). Arterivirus and nairovirus ovarian tumor domain-containing Deubiquitinases target activated RIG-I to control innate immune signaling. . J Virol 86:, 773–785. [CrossRef] [PubMed]
    [Google Scholar]
  42. Wertz I. E. , O’Rourke K. M. , Zhou H. , Eby M. , Aravind L. , Seshagiri S. , Wu P. , Wiesmann C. , Baker R. . & other authors ( 2004; ). De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. . Nature 430:, 694–699. [CrossRef] [PubMed]
    [Google Scholar]
  43. Zhao C. , Denison C. , Huibregtse J. M. , Gygi S. , Krug R. M. . ( 2005; ). Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. . Proc Natl Acad Sci U S A 102:, 10200–10205. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.048322-0
Loading
/content/journal/jgv/10.1099/vir.0.048322-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error