1887

Abstract

This study developed a hanging-droplet long PCR, a generic and highly sensitive strategy to facilitate the identification of new human papillomavirus (HPV) genomes. This novel procedure used for the first time the hanging-droplet PCR technique for the amplification of long DNA fragments with generic primers targeting the L1 and E1 regions. It was first applied to the amplification of types belonging to the highly divergent genus (γ-PV). The hanging-droplet long PCR was 100-fold more sensitive than a simple long PCR procedure, detecting as few as ten copies of HPV-4. Nineteen skin samples, potentially containing putative HPV types from the γ-PV genus, were also screened. The method identified four γ-PV genomic halves from new and previously described putative types, and made the full characterization of HPV-156 possible. This novel virus meets the criteria for a new species within the γ-PV genus, with nucleotide identities in the L1 ORF ranging from 58.3 to 67.3 % compared with representative types of the current γ-PV species. HPV-156 showed the highest identity to HPV-60 (67.3 %) from species γ-4, and was consistently closely related to it in both late- and early-gene-derived phylogenies. In conclusion, this report provides a versatile and highly sensitive approach that allowed identification of the prototype of a new species within the γ-PV genus. Its application with primers targeting the different genera in which both human and non-human PVs are distributed may facilitate characterization of the missing members of the family .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.048157-0
2013-03-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/3/524.html?itemId=/content/journal/jgv/10.1099/vir.0.048157-0&mimeType=html&fmt=ahah

References

  1. Antonsson A., Forslund O., Ekberg H., Sterner G., Hansson B. G. 2000; The ubiquity and impressive genomic diversity of human skin papillomaviruses suggest a commensalic nature of these viruses. J Virol 74:11636–11641 [CrossRef][PubMed]
    [Google Scholar]
  2. Asgari M. M., Kiviat N. B., Critchlow C. W., Stern J. E., Argenyi Z. B., Raugi G. J., Berg D., Odland P. B., Hawes S. E., de Villiers E. M. 2008; Detection of human papillomavirus DNA in cutaneous squamous cell carcinoma among immunocompetent individuals. J Invest Dermatol 128:1409–1417 [CrossRef][PubMed]
    [Google Scholar]
  3. Berkhout R. J., Bouwes Bavinck J. N., ter Schegget J. 2000; Persistence of human papillomavirus DNA in benign and (pre)malignant skin lesions from renal transplant recipients. J Clin Microbiol 38:2087–2096[PubMed]
    [Google Scholar]
  4. Bernard H. U., Burk R. D., Chen Z., van Doorslaer K., Hausen H., de Villiers E. M. 2010; Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 401:70–79 [CrossRef][PubMed]
    [Google Scholar]
  5. Bravo I. G., de Sanjosé S., Gottschling M. 2010; The clinical importance of understanding the evolution of papillomaviruses. Trends Microbiol 18:432–438 [CrossRef][PubMed]
    [Google Scholar]
  6. Cavatorta A. L., Fumero G., Chouhy D., Aguirre R., Nocito A. L., Giri A. A., Banks L., Gardiol D. 2004; Differential expression of the human homologue of Drosophila discs large oncosuppressor in histologic samples from human papillomavirus-associated lesions as a marker for progression to malignancy. Int J Cancer 111:373–380 [CrossRef][PubMed]
    [Google Scholar]
  7. Chen Z., Schiffman M., Herrero R., Desalle R., Burk R. D. 2007; Human papillomavirus (HPV) types 101 and 103 isolated from cervicovaginal cells lack an E6 open reading frame (ORF) and are related to gamma-papillomaviruses. Virology 360:447–453 [CrossRef][PubMed]
    [Google Scholar]
  8. Chen A. C.-H., McMillan N. A., Antonsson A. 2008; Human papillomavirus type spectrum in normal skin of individuals with or without a history of frequent sun exposure. J Gen Virol 89:2891–2897 [CrossRef][PubMed]
    [Google Scholar]
  9. Chouhy D., Gorosito M., Sánchez A., Serra E. C., Bergero A., Fernandez Bussy R., Giri A. A. 2010; New generic primer system targeting mucosal/genital and cutaneous human papillomaviruses leads to the characterization of HPV 115, a novel beta-papillomavirus species 3. Virology 397:205–216 [CrossRef][PubMed]
    [Google Scholar]
  10. de Villiers E. M., Gunst K. 2009; Characterization of seven novel human papillomavirus types isolated from cutaneous tissue, but also present in mucosal lesions. J Gen Virol 90:1999–2004 [CrossRef][PubMed]
    [Google Scholar]
  11. de Villiers E. M., Fauquet C., Broker T. R., Bernard H. U., zur Hausen H. 2004; Classification of papillomaviruses. Virology 324:17–27 [CrossRef][PubMed]
    [Google Scholar]
  12. Drummond A. J., Rambaut A. 2007; beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214 [CrossRef][PubMed]
    [Google Scholar]
  13. Fanning A. S., Anderson J. M. 1999; PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. J Clin Invest 103:767–772 [CrossRef][PubMed]
    [Google Scholar]
  14. Forslund O. 2007; Genetic diversity of cutaneous human papillomaviruses. J Gen Virol 88:2662–2669 [CrossRef][PubMed]
    [Google Scholar]
  15. Forslund O., Antonsson A., Nordin P., Stenquist B., Hansson B. G. 1999; A broad range of human papillomavirus types detected with a general PCR method suitable for analysis of cutaneous tumours and normal skin. J Gen Virol 80:2437–2443[PubMed]
    [Google Scholar]
  16. Forslund O., Ly H., Higgins G. 2003; Improved detection of cutaneous human papillomavirus DNA by single tube nested ‘hanging droplet’ PCR. J Virol Methods 110:129–136 [CrossRef][PubMed]
    [Google Scholar]
  17. Forslund O., Iftner T., Andersson K., Lindelof B., Hradil E., Nordin P., Stenquist B., Kirnbauer R., Dillner J., de Villiers E. M.Viraskin Study Group 2007; Cutaneous human papillomaviruses found in sun-exposed skin: Beta-papillomavirus species 2 predominates in squamous cell carcinoma. J Infect Dis 196:876–883 [CrossRef][PubMed]
    [Google Scholar]
  18. Gottschling M., Köhler A., Stockfleth E., Nindl I. 2007; Phylogenetic analysis of beta-papillomaviruses as inferred from nucleotide and amino acid sequence data. Mol Phylogenet Evol 42:213–222 [CrossRef][PubMed]
    [Google Scholar]
  19. Harwood C. A., Surentheran T., McGregor J. M., Spink P. J., Leigh I. M., Breuer J., Proby C. M. 2000; Human papillomavirus infection and non-melanoma skin cancer in immunosuppressed and immunocompetent individuals. J Med Virol 61:289–297 [CrossRef][PubMed]
    [Google Scholar]
  20. Harwood C. A., Surentheran T., Sasieni P., Proby C. M., Bordea C., Leigh I. M., Wojnarowska F., Breuer J., McGregor J. M. 2004; Increased risk of skin cancer associated with the presence of epidermodysplasia verruciformis human papillomavirus types in normal skin. Br J Dermatol 150:949–957 [CrossRef][PubMed]
    [Google Scholar]
  21. Hazard K., Karlsson A., Andersson K., Ekberg H., Dillner J., Forslund O. 2007; Cutaneous human papillomaviruses persist on healthy skin. J Invest Dermatol 127:116–119 [CrossRef][PubMed]
    [Google Scholar]
  22. Herbst L. H., Lenz J., Van Doorslaer K., Chen Z., Stacy B. A., Wellehan J. F. Jr, Manire C. A., Burk R. D. 2009; Genomic characterization of two novel reptilian papillomaviruses, Chelonia mydas papillomavirus 1 and Caretta caretta papillomavirus 1. Virology 383:131–135 [CrossRef][PubMed]
    [Google Scholar]
  23. Kalendar R., Lee D., Schulman A. 2009; FastPCR software for PCR primer and probe design and repeat search. . Genes Genom Genomics 3:1–14
    [Google Scholar]
  24. Köhler A., Gottschling M., Förster J., Röwert-Huber J., Stockfleth E., Nindl I. 2010; Genomic characterization of a novel human papillomavirus (HPV-117) with a high viral load in a persisting wart. Virology 399:129–133 [CrossRef][PubMed]
    [Google Scholar]
  25. Köhler A., Gottschling M., Manning K., Lehmann M. D., Schulz E., Krüger-Corcoran D., Stockfleth E., Nindl I. 2011; Genomic characterization of ten novel cutaneous human papillomaviruses from keratotic lesions of immunosuppressed patients. J Gen Virol 92:1585–1594 [CrossRef][PubMed]
    [Google Scholar]
  26. Narechania A., Chen Z., DeSalle R., Burk R. D. 2005; Phylogenetic incongruence among oncogenic genital alpha human papillomaviruses. J Virol 79:15503–15510 [CrossRef][PubMed]
    [Google Scholar]
  27. Rector A., Stevens H., Lacave G., Lemey P., Mostmans S., Salbany A., Vos M., Van Doorslaer K., Ghim S. J.other authors 2008; Genomic characterization of novel dolphin papillomaviruses provides indications for recombination within the Papillomaviridae. Virology 378:151–161 [CrossRef][PubMed]
    [Google Scholar]
  28. Robles-Sikisaka R., Rivera R., Nollens H. H., St Leger J., Durden W. N., Stolen M., Burchell J., Wellehan J. F. Jr 2012; Evidence of recombination and positive selection in cetacean papillomaviruses. Virology 427:189–197 [CrossRef][PubMed]
    [Google Scholar]
  29. Shamanin V., Glover M., Rausch C., Proby C., Leigh I. M., zur Hausen H., de Villiers E. M. 1994; Specific types of human papillomavirus found in benign proliferations and carcinomas of the skin in immunosuppressed patients. Cancer Res 54:4610–4613[PubMed]
    [Google Scholar]
  30. Shamanin V., zur Hausen H., Lavergne D., Proby C. M., Leigh I. M., Neumann C., Hamm H., Goos M., Haustein U. F.other authors 1996; Human papillomavirus infections in nonmelanoma skin cancers from renal transplant recipients and nonimmunosuppressed patients. J Natl Cancer Inst 88:802–811 [CrossRef][PubMed]
    [Google Scholar]
  31. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  32. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  33. Titolo S., Pelletier A., Sauvé F., Brault K., Wardrop E., White P. W., Amin A., Cordingley M. G., Archambault J. 1999; Role of the ATP-binding domain of the human papillomavirus type 11 E1 helicase in E2-dependent binding to the origin. J Virol 73:5282–5293[PubMed]
    [Google Scholar]
  34. Vasiljevic N., Hazard K., Dillner J., Forslund O. 2008; Four novel human betapapillomaviruses of species 2 preferentially found in actinic keratosis. J Gen Virol 89:2467–2474 [CrossRef][PubMed]
    [Google Scholar]
  35. Walsh E. E., Falsey A. R., Swinburne I. A., Formica M. A. 2001; Reverse transcription polymerase chain reaction (RT-PCR) for diagnosis of respiratory syncytial virus infection in adults: use of a single-tube “hanging droplet” nested PCR. J Med Virol 63:259–263 [CrossRef][PubMed]
    [Google Scholar]
  36. Weissenborn S. J., Nindl I., Purdie K., Harwood C., Proby C., Breuer J., Majewski S., Pfister H., Wieland U. 2005; Human papillomavirus-DNA loads in actinic keratoses exceed those in non-melanoma skin cancers. J Invest Dermatol 125:93–97 [CrossRef][PubMed]
    [Google Scholar]
  37. zur Hausen H. 2002; Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342–350 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.048157-0
Loading
/content/journal/jgv/10.1099/vir.0.048157-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error