1887

Abstract

We previously reported a naturally occurring BF intersubtype recombinant viral protein U (Vpu) variant with an augmented capacity to enhance viral replication. Structural analysis of this variant revealed that its transmembrane domain and α-helix I in the cytoplasmic domain (CTD) corresponded to subtype B, whereas the α-helix II in the CTD corresponded to subtype F1. In this study, we aimed to evaluate the role of the Vpu cytoplasmic α-helix II domain in viral release enhancement and in the down-modulation of BST-2 and CD4 from the cell surface. In addition, as serine residues in Vpu amino acid positions 61 or 64 have been shown to regulate Vpu intracellular half-life, which in turn could influence the magnitude of viral release, we also studied the impact of these residues on the VpuBF functions, since S61 and S64 are infrequently found among BF recombinant Vpu variants. Our results showed that the exchange of Vpu α-helix II between subtypes (B→F) directly correlated with the enhancement of viral release and, to a lesser extent, with changes in the capacity of the resulting chimera to down-modulate BST-2 and CD4. No differences in viral release and BST-2 down-modulation were observed between VpuBF and VpuBF-E61S. On the other hand, VpuBF-A64S showed a slightly reduced capacity to enhance viral production, but was modestly more efficient than VpuBF in down-modulating BST-2. In summary, our observations clearly indicate that α-helix II is actively involved in Vpu viral-release-promoting activity and that intersubtype recombination between subtypes B and F1 created a protein variant with a higher potential to boost the spread of the recombinant strain that harbours it.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.047746-0
2013-04-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/4/758.html?itemId=/content/journal/jgv/10.1099/vir.0.047746-0&mimeType=html&fmt=ahah

References

  1. Abraha A., Nankya I. L., Gibson R., Demers K., Tebit D. M., Johnston E., Katzenstein D., Siddiqui A., Herrera C.. & other authors ( 2009;). CCR5- and CXCR4-tropic subtype C human immunodeficiency virus type 1 isolates have a lower level of pathogenic fitness than other dominant group M subtypes: implications for the epidemic. . J Virol 83:, 5592–5605. [CrossRef][PubMed]
    [Google Scholar]
  2. Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A.. ( 1986;). Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. . J Virol 59:, 284–291.[PubMed]
    [Google Scholar]
  3. Ariën K. K., Troyer R. M., Gali Y., Colebunders R. L., Arts E. J., Vanham G.. ( 2005;). Replicative fitness of historical and recent HIV-1 isolates suggests HIV-1 attenuation over time. . AIDS 19:, 1555–1564. [CrossRef][PubMed]
    [Google Scholar]
  4. Cieśla J., Frączyk T., Rode W.. ( 2011;). Phosphorylation of basic amino acid residues in proteins: important but easily missed. . Acta Biochim Pol 58:, 137–148.[PubMed]
    [Google Scholar]
  5. Cohen E. A., Terwilliger E. F., Sodroski J. G., Haseltine W. A.. ( 1988;). Identification of a protein encoded by the vpu gene of HIV-1. . Nature 334:, 532–534. [CrossRef][PubMed]
    [Google Scholar]
  6. De Candia C., Espada C., Duette G., Ghiglione Y., Turk G., Salomón H., Carobene M.. ( 2010;). Viral replication is enhanced by an HIV-1 intersubtype recombination-derived Vpu protein. . Virol J 7:, 259. [CrossRef][PubMed]
    [Google Scholar]
  7. Douglas J. L., Viswanathan K., McCarroll M. N., Gustin J. K., Früh K., Moses A. V.. ( 2009;). Vpu directs the degradation of the human immunodeficiency virus restriction factor BST-2/tetherin via a betaTrCP-dependent mechanism. . J Virol 83:, 7931–7947. [CrossRef][PubMed]
    [Google Scholar]
  8. Dubé M., Roy B. B., Guiot-Guillain P., Mercier J., Binette J., Leung G., Cohen E. A.. ( 2009;). Suppression of tetherin-restricting activity upon human immunodeficiency virus type 1 particle release correlates with localization of Vpu in the trans-Golgi network. . J Virol 83:, 4574–4590. [CrossRef][PubMed]
    [Google Scholar]
  9. Dubé M., Bhusan Roy B., Guiot-Guillain P., Binette J., Mercier J., Chiasson A., Cohen É. A.. ( 2010;). Antagonism of tetherin restriction of HIV-1 release by Vpu involves binding and sequestration of the restriction factor in a perinuclear compartment. . PLoS Pathog 6:, e1000856. [CrossRef][PubMed]
    [Google Scholar]
  10. Estrabaud E., Le Rouzic E., Lopez-Vergès S., Morel M., Belaïdouni N., Benarous R., Transy C., Berlioz-Torrent C., Margottin-Goguet F.. ( 2007;). Regulated degradation of the HIV-1 Vpu protein through a betaTrCP-independent pathway limits the release of viral particles. . PLoS Pathog 3:, e104. [CrossRef][PubMed]
    [Google Scholar]
  11. Gao F., Robertson D. L., Carruthers C. D., Morrison S. G., Jian B., Chen Y., Barré-Sinoussi F., Girard M., Srinivasan A.. & other authors ( 1998;). A comprehensive panel of near-full-length clones and reference sequences for non-subtype B isolates of human immunodeficiency virus type 1. . J Virol 72:, 5680–5698.[PubMed]
    [Google Scholar]
  12. Geuenich S., Kaderali L., Allespach I., Sertel S., Keppler O. T.. ( 2009;). Biological signature characteristics of primary isolates from human immunodeficiency virus type 1 group O in ex vivo human tonsil histocultures. . J Virol 83:, 10494–10503. [CrossRef][PubMed]
    [Google Scholar]
  13. Goffinet C., Allespach I., Homann S., Tervo H. M., Habermann A., Rupp D., Oberbremer L., Kern C., Tibroni N.. & other authors ( 2009;). HIV-1 antagonism of CD317 is species specific and involves Vpu-mediated proteasomal degradation of the restriction factor. . Cell Host Microbe 5:, 285–297. [CrossRef][PubMed]
    [Google Scholar]
  14. Goffinet C., Homann S., Ambiel I., Tibroni N., Rupp D., Keppler O. T., Fackler O. T.. ( 2010;). Antagonism of CD317 restriction of human immunodeficiency virus type 1 (HIV-1) particle release and depletion of CD317 are separable activities of HIV-1 Vpu. . J Virol 84:, 4089–4094. [CrossRef][PubMed]
    [Google Scholar]
  15. Hemelaar J., Gouws E., Ghys P. D., Osmanov S..WHO-UNAIDS Network for HIV Isolation and Characterisation ( 2011;). Global trends in molecular epidemiology of HIV-1 during 2000–2007. . AIDS 25:, 679–689. [CrossRef][PubMed]
    [Google Scholar]
  16. Hill M. S., Ruiz A., Schmitt K., Stephens E. B.. ( 2010;). Identification of amino acids within the second alpha helical domain of the human immunodeficiency virus type 1 Vpu that are critical for preventing CD4 cell surface expression. . Virology 397:, 104–112. [CrossRef][PubMed]
    [Google Scholar]
  17. Holguín A., Suñe C., Hamy F., Soriano V., Klimkait T.. ( 2006;). Natural polymorphisms in the protease gene modulate the replicative capacity of non-B HIV-1 variants in the absence of drug pressure. . J Clin Virol 36:, 264–271. [CrossRef][PubMed]
    [Google Scholar]
  18. Johnson L. N., Barford D.. ( 1993;). The effects of phosphorylation on the structure and function of proteins. . Annu Rev Biophys Biomol Struct 22:, 199–232. [CrossRef][PubMed]
    [Google Scholar]
  19. Kueck T., Neil S. J.. ( 2012;). A cytoplasmic tail determinant in HIV-1 Vpu mediates targeting of tetherin for endosomal degradation and counteracts interferon-induced restriction. . PLoS Pathog 8:, e1002609. [CrossRef][PubMed]
    [Google Scholar]
  20. Kuhl B. D., Sloan R. D., Donahue D. A., Liang C., Wainberg M. A.. ( 2011;). Vpu-mediated tetherin antagonism of ongoing HIV-1 infection in CD4+ T-cells is not directly related to the extent of tetherin cell surface downmodulation. . Virology 417:, 353–361. [CrossRef][PubMed]
    [Google Scholar]
  21. Lock M., Greenberg M. E., Iafrate A. J., Swigut T., Muench J., Kirchhoff F., Shohdy N., Skowronski J.. ( 1999;). Two elements target SIV Nef to the AP-2 clathrin adaptor complex, but only one is required for the induction of CD4 endocytosis. . EMBO J 18:, 2722–2733. [CrossRef][PubMed]
    [Google Scholar]
  22. Magadán J. G., Pérez-Victoria F. J., Sougrat R., Ye Y., Strebel K., Bonifacino J. S.. ( 2010;). Multilayered mechanism of CD4 downregulation by HIV-1 Vpu involving distinct ER retention and ERAD targeting steps. . PLoS Pathog 6:, e1000869. [CrossRef][PubMed]
    [Google Scholar]
  23. Mangeat B., Gers-Huber G., Lehmann M., Zufferey M., Luban J., Piguet V.. ( 2009;). HIV-1 Vpu neutralizes the antiviral factor tetherin/BST-2 by binding it and directing its beta-TrCP2-dependent degradation. . PLoS Pathog 5:, e1000574. [CrossRef][PubMed]
    [Google Scholar]
  24. Margottin F., Bour S. P., Durand H., Selig L., Benichou S., Richard V., Thomas D., Strebel K., Benarous R.. ( 1998;). A novel human WD protein, h-βTrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. . Mol Cell 1:, 565–574. [CrossRef][PubMed]
    [Google Scholar]
  25. Mariani R., Skowronski J.. ( 1993;). CD4 down-regulation by nef alleles isolated from human immunodeficiency virus type 1-infected individuals. . Proc Natl Acad Sci U S A 90:, 5549–5553. [CrossRef][PubMed]
    [Google Scholar]
  26. Mitchell R. S., Katsura C., Skasko M. A., Fitzpatrick K., Lau D., Ruiz A., Stephens E. B., Margottin-Goguet F., Benarous R., Guatelli J. C.. ( 2009;). Vpu antagonizes BST-2-mediated restriction of HIV-1 release via β-TrCP and endo-lysosomal trafficking. . PLoS Pathog 5:, e1000450. [CrossRef][PubMed]
    [Google Scholar]
  27. Miyagi E., Andrew A. J., Kao S., Strebel K.. ( 2009;). Vpu enhances HIV-1 virus release in the absence of Bst-2 cell surface down-modulation and intracellular depletion. . Proc Natl Acad Sci U S A 106:, 2868–2873. [CrossRef][PubMed]
    [Google Scholar]
  28. Neil S. J., Zang T., Bieniasz P. D.. ( 2008;). Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. . Nature 451:, 425–430. [CrossRef][PubMed]
    [Google Scholar]
  29. Nomaguchi M., Doi N., Fujiwara S., Fujita M., Adachi A.. ( 2010;). Site-directed mutagenesis of HIV-1 vpu gene demonstrates two clusters of replication-defective mutants with distinct ability to down-modulate cell surface CD4 and tetherin. . Front Microbiol 1:, 116–117.[PubMed]
    [Google Scholar]
  30. Pacyniak E., Gomez M. L., Gomez L. M., Mulcahy E. R., Jackson M., Hout D. R., Wisdom B. J., Stephens E. B.. ( 2005;). Identification of a region within the cytoplasmic domain of the subtype B Vpu protein of human immunodeficiency virus type 1 (HIV-1) that is responsible for retention in the Golgi complex and its absence in the Vpu protein from a subtype C HIV-1. . AIDS Res Hum Retroviruses 21:, 379–394. [CrossRef][PubMed]
    [Google Scholar]
  31. Petit S. J., Blondeau C., Towers G. J.. ( 2011;). Analysis of the human immunodeficiency virus type 1 M group Vpu domains involved in antagonizing tetherin. . J Gen Virol 92:, 2937–2948. [CrossRef][PubMed]
    [Google Scholar]
  32. Ramírez de Arellano E., Soriano V., Alcamil J., Holguín A.. ( 2006;). New findings on transcription regulation across different HIV-1 subtypes. . AIDS Rev 8:, 9–16.[PubMed]
    [Google Scholar]
  33. Sato K., Misawa N., Fukuhara M., Iwami S., An D. S., Ito M., Koyanagi Y.. ( 2012;). Vpu augments the initial burst phase of HIV-1 propagation and downregulates BST2 and CD4 in humanized mice. . J Virol 86:, 5000–5013. [CrossRef][PubMed]
    [Google Scholar]
  34. Sauter D., Schindler M., Specht A., Landford W. N., Münch J., Kim K. A., Votteler J., Schubert U., Bibollet-Ruche F., Keele B. F.. ( 2009;). Tetherin-driven adaptation of Vpu and Nef function and the evolution of pandemic and nonpandemic HIV-1 strains. . Cell Host Microbe 6:, 409–421. [CrossRef][PubMed]
    [Google Scholar]
  35. Sauter D., Hué S., Petit S. J., Plantier J. C., Towers G. J., Kirchhoff F., Gupta R. K.. ( 2011;). HIV-1 Group P is unable to antagonize human tetherin by Vpu, Env or Nef. . Retrovirology 8:, 103. [CrossRef][PubMed]
    [Google Scholar]
  36. Schmidt S., Fritz J. V., Bitzegeio J., Fackler O. T., Keppler O. T.. ( 2011;). HIV-1 Vpu blocks recycling and biosynthetic transport of the intrinsic immunity factor CD317/tetherin to overcome the virion release restriction. . MBio 2:, e00036–11. [CrossRef][PubMed]
    [Google Scholar]
  37. Schubert U., Henklein P., Boldyreff B., Wingender E., Strebel K., Porstmann T.. ( 1994;). The human immunodeficiency virus type 1 encoded Vpu protein is phosphorylated by casein kinase-2 (CK-2) at positions Ser52 and Ser56 within a predicted α-helix-turn-α-helix-motif. . J Mol Biol 236:, 16–25. [CrossRef][PubMed]
    [Google Scholar]
  38. Schubert U., Bour S., Ferrer-Montiel A. V., Montal M., Maldarell F., Strebel K.. ( 1996a;). The two biological activities of human immunodeficiency virus type 1 Vpu protein involve two separable structural domains. . J Virol 70:, 809–819.[PubMed]
    [Google Scholar]
  39. Schubert U., Ferrer-Montiel A. V., Oblatt-Montal M., Henklein P., Strebel K., Montal M.. ( 1996b;). Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. . FEBS Lett 398:, 12–18. [CrossRef][PubMed]
    [Google Scholar]
  40. Shah A. H., Sowrirajan B., Davis Z. B., Ward J. P., Campbell E. M., Planelles V., Barker E.. ( 2010;). Degranulation of natural killer cells following interaction with HIV-1-infected cells is hindered by downmodulation of NTB-A by Vpu. . Cell Host Microbe 8:, 397–409. [CrossRef][PubMed]
    [Google Scholar]
  41. Strebel K., Klimkait T., Martin M. A.. ( 1988;). A novel gene of HIV-1, vpu, and its 16-kilodalton product. . Science 241:, 1221–1223. [CrossRef][PubMed]
    [Google Scholar]
  42. Tarrant M. K., Cole P. A.. ( 2009;). The chemical biology of protein phosphorylation. . Annu Rev Biochem 78:, 797–825. [CrossRef][PubMed]
    [Google Scholar]
  43. Tervo H. M., Homann S., Ambiel I., Fritz J. V., Fackler O. T., Keppler O. T.. ( 2011;). β-TrCP is dispensable for Vpu’s ability to overcome the CD317/tetherin-imposed restriction to HIV-1 release. . Retrovirology 8:, 9. [CrossRef][PubMed]
    [Google Scholar]
  44. Van Damme N., Goff D., Katsura C., Jorgenson R. L., Mitchell R., Johnson M. C., Stephens E. B., Guatelli J.. ( 2008;). The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. . Cell Host Microbe 3:, 245–252. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.047746-0
Loading
/content/journal/jgv/10.1099/vir.0.047746-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error