1887

Abstract

Human chronic hepatitis C virus (HCV) infections pose a significant public health threat, necessitating the development of novel treatments and vaccines. HCV infections range from spontaneous resolution to end-stage liver disease. Approximately 10–30 % of HCV infections undergo spontaneous resolution independent of treatment by yet-to-be-defined mechanisms. These individuals test positive for anti-HCV antibodies in the absence of detectable viral serum RNA. To identify genes associated with HCV clearance, this study compared gene expression profiles between current drug users chronically infected with HCV and drug users who cleared their HCV infection. This analysis identified 91 differentially regulated (up- or downregulated by twofold or more) genes potentially associated with HCV clearance. The majority of genes identified were associated with immune function, with the remaining genes categorized either as cancer related or ‘other’. Identification of factors and pathways that may influence virus clearance will be essential to the development of novel treatment strategies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.047738-0
2013-03-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/3/534.html?itemId=/content/journal/jgv/10.1099/vir.0.047738-0&mimeType=html&fmt=ahah

References

  1. Alric L., Fort M., Izopet J., Vinel J. P., Bureau C., Sandre K., Charlet J. P., Beraud M., Abbal M., Duffaut M.. ( 2000;). Study of host- and virus-related factors associated with spontaneous hepatitis C virus clearance. . Tissue Antigens 56:, 154–158. [CrossRef][PubMed]
    [Google Scholar]
  2. Alter M. J.. ( 1997;). Epidemiology of hepatitis C. . Hepatology 26: (Suppl. 1), 62S–65S. [CrossRef][PubMed]
    [Google Scholar]
  3. Ashburner M., Ball C. A., Blake J. A., Botstein D., Butler H., Cherry J. M., Davis A. P., Dolinski K., Dwight S. S.. & other authors ( 2000;). Gene ontology: tool for the unification of biology. . Nat Genet 25:, 25–29. [CrossRef][PubMed]
    [Google Scholar]
  4. Balagopal A., Thomas D. L., Thio C. L.. ( 2010;). IL28B and the control of hepatitis C virus infection. . Gastroenterology 139:, 1865–1876. [CrossRef][PubMed]
    [Google Scholar]
  5. Benjamini Y., Hochberg Y.. ( 1995;). Controlling the false discovery rate: a practical and powerful approach to multiple testing. . J R Stat Soc, B 57:, 289–300.
    [Google Scholar]
  6. Bolstad B. M., Irizarry R. A., Astrand M., Speed T. P.. ( 2003;). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. . Bioinformatics 19:, 185–193. [CrossRef][PubMed]
    [Google Scholar]
  7. Chan T.-M., Ho S. K., Lai C.-L., Cheng I. K., Lai K.-N.. ( 1999;). Lymphocyte subsets in renal allograft recipients with chronic hepatitis C virus infection. . Nephrol Dial Transplant 14:, 717–722. [CrossRef][PubMed]
    [Google Scholar]
  8. Chang K.-M., Thimme R., Melpolder J. J., Oldach D., Pemberton J., Moorhead-Loudis J., McHutchison J. G., Alter H. J., Chisari F. V.. ( 2001;). Differential CD4+ and CD8+ T-cell responsiveness in hepatitis C virus infection. . Hepatology 33:, 267–276. [CrossRef][PubMed]
    [Google Scholar]
  9. Chang S., Kodys K., Szabo G.. ( 2010;). Impaired expression and function of Toll-like receptor 7 in hepatitis C virus infection in human hepatoma cells. . Hepatology 51:, 35–42. [CrossRef][PubMed]
    [Google Scholar]
  10. Chua P. K., McCown M. F., Rajyaguru S., Kular S., Varma R., Symons J., Chiu S. S., Cammack N., Nájera I.. ( 2009;). Modulation of alpha interferon anti-hepatitis C virus activity by ISG15. . J Gen Virol 90:, 2929–2939. [CrossRef][PubMed]
    [Google Scholar]
  11. Cole S. W., Yan W., Galic Z., Arevalo J., Zack J. A.. ( 2005;). Expression-based monitoring of transcription factor activity: the TELiS database. . Bioinformatics 21:, 803–810. [CrossRef][PubMed]
    [Google Scholar]
  12. Cox A. L., Netski D. M., Mosbruger T., Sherman S. G., Strathdee S., Ompad D., Vlahov D., Chien D., Shyamala V.. & other authors ( 2005;). Prospective evaluation of community-acquired acute-phase hepatitis C virus infection. . Clin Infect Dis 40:, 951–958. [CrossRef][PubMed]
    [Google Scholar]
  13. Dolganiuc A., Kodys K., Marshall C., Saha B., Zhang S., Bala S., Szabo G.. ( 2012;). Type III interferons, IL-28 and IL-29, are increased in chronic HCV infection and induce myeloid dendritic cell-mediated FoxP3+ regulatory T cells. . PLoS ONE 7:, e44915. [CrossRef][PubMed]
    [Google Scholar]
  14. Folkers M. E., Delker D. A., Maxwell C. I., Nelson C. A., Schwartz J. J., Nix D. A., Hagedorn C. H.. ( 2011;). ENCODE tiling array analysis identifies differentially expressed annotated and novel 5′ capped RNAs in hepatitis C infected liver. . PLoS ONE 6:, e14697. [CrossRef][PubMed]
    [Google Scholar]
  15. Gehrau R., Maluf D., Archer K., Stravitz R., Suh J., Le N., Mas V.. ( 2011;). Molecular pathways differentiate hepatitis C virus (HCV) recurrence from acute cellular rejection in HCV liver recipients. . Mol Med 17:, 824–833. [CrossRef][PubMed]
    [Google Scholar]
  16. Gong Q., Cheng M., Chen H., Liu X., Si Y., Yang Y., Yuan Y., Jin C., Yang W.. & other authors ( 2011;). Phospholipid scramblase 1 mediates hepatitis C virus entry into host cells. . FEBS Lett 585:, 2647–2652. [CrossRef][PubMed]
    [Google Scholar]
  17. Hartling H. J., Gaardbo J. C., Ronit A., Knudsen L. S., Ullum H., Vainer B., Clausen M. R., Skogstrand K., Gerstoft J., Nielsen S. D.. ( 2012;). CD4+ and CD8+ regulatory T cells (Tregs) are elevated and display an active phenotype in patients with chronic HCV mono-infection and HIV/HCV co-infection. . Scand J Immunol 76:, 294–305. [CrossRef][PubMed]
    [Google Scholar]
  18. Hofer H., Watkins-Riedel T., Janata O., Penner E., Holzmann H., Steindl-Munda P., Gangl A., Ferenci P.. ( 2003;). Spontaneous viral clearance in patients with acute hepatitis C can be predicted by repeated measurements of serum viral load. . Hepatology 37:, 60–64. [CrossRef][PubMed]
    [Google Scholar]
  19. Honda M., Kaneko S., Kawai H., Shirota Y., Kobayashi K.. ( 2001;). Differential gene expression between chronic hepatitis B and C hepatic lesion. . Gastroenterology 120:, 955–966. [CrossRef][PubMed]
    [Google Scholar]
  20. Hoofnagle J. H.. ( 1997;). Hepatitis C: the clinical spectrum of disease. . Hepatology 26: (Suppl. 1), 15S–20S. [CrossRef][PubMed]
    [Google Scholar]
  21. Huang D. W., Sherman B. T., Lempicki R. A.. ( 2008;). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. . Nat Protoc 4:, 44–57. [CrossRef][PubMed]
    [Google Scholar]
  22. Hwang L.-Y., Grimes C. Z., Tran T. Q., Clark A., Xia R., Lai D., Troisi C., Williams M.. ( 2010;). Accelerated hepatitis B vaccination schedule among drug users: a randomized controlled trial. . J Infect Dis 202:, 1500–1509. [CrossRef][PubMed]
    [Google Scholar]
  23. Iizuka N., Oka M., Yamada-Okabe H., Mori N., Tamesa T., Okada T., Takemoto N., Hashimoto K., Tangoku A.. & other authors ( 2003;). Differential gene expression in distinct virologic types of hepatocellular carcinoma: association with liver cirrhosis. . Oncogene 22:, 3007–3014. [CrossRef][PubMed]
    [Google Scholar]
  24. Ikeda M., Mori K., Ariumi Y., Dansako H., Kato N.. ( 2009;). Oncostatin M synergistically inhibits HCV RNA replication in combination with interferon-α. . FEBS Lett 583:, 1434–1438. [CrossRef][PubMed]
    [Google Scholar]
  25. Itsui Y., Sakamoto N., Kakinuma S., Nakagawa M., Sekine-Osajima Y., Tasaka-Fujita M., Nishimura-Sakurai Y., Suda G., Karakama Y.. & other authors ( 2009;). Antiviral effects of the interferon-induced protein guanylate binding protein 1 and its interaction with the hepatitis C virus NS5B protein. . Hepatology 50:, 1727–1737. [CrossRef][PubMed]
    [Google Scholar]
  26. Jouan L., Chatel-Chaix L., Melançon P., Rodrigue-Gervais I. G., Raymond V. A., Selliah S., Bilodeau M., Grandvaux N., Lamarre D.. ( 2012;). Targeted impairment of innate antiviral responses in the liver of chronic hepatitis C patients. . J Hepatol 56:, 70–77. [CrossRef][PubMed]
    [Google Scholar]
  27. Lalle E., Calcaterra S., Horejsh D., Abbate I., D’Offizi G., Abdeddaim A., Vlassi C., Antonucci G., Capobianchi M. R.. ( 2008;). Ability of peripheral blood mononuclear cells to activate interferon response in vitro is predictive of virological response in HCV patients. . J Biol Regul Homeost Agents 22:, 153–160.[PubMed]
    [Google Scholar]
  28. Lurie Y., Nevens F., Aprosina Z. G., Fedorova T. A., Kalinin A. V., Klimova E. A., Ilan Y., Maevskaya M. V., Warnes T. W.. & other authors ( 2002;). A multicentre, randomized study to evaluate the safety and efficacy of histamine dihydrochloride and interferon-α-2b for the treatment of chronic hepatitis C. . J Viral Hepat 9:, 346–353. [CrossRef][PubMed]
    [Google Scholar]
  29. Morishima C., Paschal D. M., Wang C. C., Yoshihara C. S., Wood B. L., Yeo A. E., Emerson S. S., Shuhart M. C., Gretch D. R.. ( 2006;). Decreased NK cell frequency in chronic hepatitis C does not affect ex vivo cytolytic killing. . Hepatology 43:, 573–580. [CrossRef][PubMed]
    [Google Scholar]
  30. Mosbruger T. L., Duggal P., Goedert J. J., Kirk G. D., Hoots W. K., Tobler L. H., Busch M., Peters M. G., Rosen H. R.. & other authors ( 2010;). Large-scale candidate gene analysis of spontaneous clearance of hepatitis C virus. . J Infect Dis 201:, 1371–1380. [CrossRef][PubMed]
    [Google Scholar]
  31. Mostafavi S., Ray D., Warde-Farley D., Grouios C., Morris Q.. ( 2008;). GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. . Genome Biol 9: (Suppl. 1), S4. [CrossRef][PubMed]
    [Google Scholar]
  32. Nisole S., Stoye J. P., Saïb A.. ( 2005;). TRIM family proteins: retroviral restriction and antiviral defence. . Nat Rev Microbiol 3:, 799–808. [CrossRef][PubMed]
    [Google Scholar]
  33. Pár G., Rukavina D., Podack E. R., Horányi M., Szekeres-Barthó J., Hegedüs G., Paál M., Szereday L., Mózsik G., Pár A.. ( 2002;). Decrease in CD3-negative-CD8dim+ and Vδ2/Vγ9 TcR+ peripheral blood lymphocyte counts, low perforin expression and the impairment of natural killer cell activity is associated with chronic hepatitis C virus infection. . J Hepatol 37:, 514–522. [CrossRef][PubMed]
    [Google Scholar]
  34. Racanelli V., Brunetti C., De Re V., Caggiari L., De Zorzi M., Leone P., Perosa F., Vacca A., Dammacco F.. ( 2011;). Antibody Vh repertoire differences between resolving and chronically evolving hepatitis C virus infections. . PLoS ONE 6:, e25606. [CrossRef][PubMed]
    [Google Scholar]
  35. Saeed A. I., Sharov V., White J., Li J., Liang W., Bhagabati N., Braisted J., Klapa M., Currier T.. & other authors ( 2003;). TM4: a free, open-source system for microarray data management and analysis. . Biotechniques 34:, 374–378.[PubMed]
    [Google Scholar]
  36. Shackel N. A., McGuinness P. H., Abbott C. A., Gorrell M. D., McCaughan G. W.. ( 2002;). Insights into the pathobiology of hepatitis C virus-associated cirrhosis: analysis of intrahepatic differential gene expression. . Am J Pathol 160:, 641–654. [CrossRef][PubMed]
    [Google Scholar]
  37. Shah D. P., Grimes C. Z., Brown E., Hwang L.-Y.. ( 2012;). Demographics, socio-behavioral factors, and drug use patterns: what matters in spontaneous HCV clearance?. J Med Virol 84:, 235–241. [CrossRef][PubMed]
    [Google Scholar]
  38. Shaker O. G., Sadik N. A.. ( 2012;). Polymorphisms in interleukin-10 and interleukin-28B genes in Egyptian patients with chronic hepatitis C virus genotype 4 and their effect on the response to pegylated interferon/ribavirin-therapy. . J Gastroenterol Hepatol 00:, 00–00.[PubMed]
    [Google Scholar]
  39. Thomas D. L., Astemborski J., Rai R. M., Anania F. A., Schaeffer M., Galai N., Nolt K., Nelson K. E., Strathdee S. A.. & other authors ( 2000;). The natural history of hepatitis C virus infection: host, viral, and environmental factors. . JAMA 284:, 450–456. [CrossRef][PubMed]
    [Google Scholar]
  40. Thomas E., Gonzalez V. D., Li Q., Modi A. A., Chen W., Noureddin M., Rotman Y., Liang T. J.. ( 2012;). HCV infection induces a unique hepatic innate immune response associated with robust production of type III interferons. . Gastroenterology 142:, 978–988. [CrossRef][PubMed]
    [Google Scholar]
  41. Villano S. A., Vlahov D., Nelson K. E., Cohn S., Thomas D. L.. ( 1999;). Persistence of viremia and the importance of long-term follow-up after acute hepatitis C infection. . Hepatology 29:, 908–914. [CrossRef][PubMed]
    [Google Scholar]
  42. Walters K. A., Syder A. J., Lederer S. L., Diamond D. L., Paeper B., Rice C. M., Katze M. G.. ( 2009;). Genomic analysis reveals a potential role for cell cycle perturbation in HCV-mediated apoptosis of cultured hepatocytes. . PLoS Pathog 5:, e1000269. [CrossRef][PubMed]
    [Google Scholar]
  43. Xie J.-Q., Guo X.-Y., Zhang X.-H., Lin B.-L., Xie D.-Y., Gao Z.-L., Wang G.-S., Zhao Z.-X.. ( 2012;). Relationship between the genetic variation in interleukin 28B and response to antiviral therapy in patients with chronic hepatitis C. . Chin Med J (Engl) 125:, 2334–2338.[PubMed]
    [Google Scholar]
  44. Yu C. I., Chiang B.-L.. ( 2010;). A new insight into hepatitis C vaccine development. . J Biomed Biotechnol 2010:, 548280. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.047738-0
Loading
/content/journal/jgv/10.1099/vir.0.047738-0
Loading

Data & Media loading...

Supplements

Supplementary Table 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error