1887

Abstract

The picornaviruses’ genome consists of a positive-sense ssRNA. Like many picornaviruses, cardioviruses synthesize two distinct polyprotein precursors from adjacent but non-overlapping genome segments. Both the [L-1ABCD-2A] and the [2BC-3ABCD] polyproteins are proteolytically processed to yield mature capsid and non-structural proteins, respectively. An unusual translational event, known as ‘StopGo’ or ‘Stop-Carry on’, is responsible for the release of the [L-1ABCD-2A] polyprotein from the ribosome and synthesis of the N-terminal amino acid of the [2BC-3ABCD] polyprotein. A common feature of these viruses is the presence of a highly conserved signature sequence for StopGo: –D(V/I)ExNPGP–, where –D(V/I)ExNPG are the last 7 aa of 2A, and the last P- is the first amino acid of 2B. Here, we report that, in contrast to encephalomyocarditis virus and foot-and-mouth disease virus, a functional StopGo does not appear to be essential for Theiler’s murine encephalomyelitis virus viability when tested and .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.047571-0
2013-02-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/2/348.html?itemId=/content/journal/jgv/10.1099/vir.0.047571-0&mimeType=html&fmt=ahah

References

  1. Atkins J. F., Wills N. M., Loughran G., Wu C. Y., Parsawar K., Ryan M. D., Wang C. H., Nelson C. C.. ( 2007;). A case for “StopGo”: reprogramming translation to augment codon meaning of GGN by promoting unconventional termination (Stop) after addition of glycine and then allowing continued translation (Go). . RNA 13:, 803–810. [CrossRef][PubMed]
    [Google Scholar]
  2. Batson S., Rundell K.. ( 1991;). Proteolysis at the 2A/2B junction in Theiler’s murine encephalomyelitis virus. . Virology 181:, 764–767. [CrossRef][PubMed]
    [Google Scholar]
  3. Brown J. D., Ryan M. D.. ( 2010;). Ribosome “skipping”: “Stop-Carry On” or “StopGo” translation. . In Recoding: Expansion of Decoding Rules Enriches Gene Expression, pp. 101–121. Edited by Atkins J. F., Gesteland R. F... Heidelberg:: Springer;. [CrossRef]
    [Google Scholar]
  4. Donnelly M. L., Gani D., Flint M., Monaghan S., Ryan M. D.. ( 1997;). The cleavage activities of aphthovirus and cardiovirus 2A proteins. . J Gen Virol 78:, 13–21.[PubMed]
    [Google Scholar]
  5. Donnelly M. L., Hughes L. E., Luke G., Mendoza H., ten Dam E., Gani D., Ryan M. D.. ( 2001a;). The ‘cleavage’ activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring ‘2A-like’ sequences. . J Gen Virol 82:, 1027–1041.[PubMed]
    [Google Scholar]
  6. Donnelly M. L., Luke G., Mehrotra A., Li X., Hughes L. E., Gani D., Ryan M. D.. ( 2001b;). Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. . J Gen Virol 82:, 1013–1025.[PubMed]
    [Google Scholar]
  7. Doronina V. A., Wu C., de Felipe P., Sachs M. S., Ryan M. D., Brown J. D.. ( 2008;). Site-specific release of nascent chains from ribosomes at a sense codon. . Mol Cell Biol 28:, 4227–4239. [CrossRef][PubMed]
    [Google Scholar]
  8. Duke G. M., Osorio J. E., Palmenberg A. C.. ( 1990;). Attenuation of Mengo virus through genetic engineering of the 5′ noncoding poly(C) tract. . Nature 343:, 474–476. [CrossRef][PubMed]
    [Google Scholar]
  9. Hahn H., Palmenberg A. C.. ( 1996;). Mutational analysis of the encephalomyocarditis virus primary cleavage. . J Virol 70:, 6870–6875.[PubMed]
    [Google Scholar]
  10. Hahn H., Palmenberg A. C.. ( 2001;). Deletion mapping of the encephalomyocarditis virus primary cleavage site. . J Virol 75:, 7215–7218. [CrossRef][PubMed]
    [Google Scholar]
  11. Harmon S. A., Updike W., Jia X. Y., Summers D. F., Ehrenfeld E.. ( 1992;). Polyprotein processing in cis and in trans by hepatitis A virus 3C protease cloned and expressed in Escherichia coli. . J Virol 66:, 5242–5247.[PubMed]
    [Google Scholar]
  12. Jackson R. J.. ( 1986;). A detailed kinetic analysis of the in vitro synthesis and processing of encephalomyocarditis virus products. . Virology 149:, 114–127. [CrossRef][PubMed]
    [Google Scholar]
  13. Leong L. E.-C., Cornell C. T., Semler B. L.. ( 2002;). Processing determinants and functions of cleavage products of picornavirus polyproteins. . In Molecular Biology of Picornaviruses, pp. 187–197. Edited by Semler B. L., Wimmer E... Washington, D.C.:: American Society for Microbiology;.
    [Google Scholar]
  14. Loughran G., Firth A. E., Atkins J. F.. ( 2011;). Ribosomal frameshifting into an overlapping gene in the 2B-encoding region of the cardiovirus genome. . Proc Natl Acad Sci U S A 108:, E1111–E1119. [CrossRef][PubMed]
    [Google Scholar]
  15. Luke G. A., de Felipe P., Lukashev A., Kallioinen S. E., Bruno E. A., Ryan M. D.. ( 2008;). Occurrence, function and evolutionary origins of ‘2A-like’ sequences in virus genomes. . J Gen Virol 89:, 1036–1042. [CrossRef][PubMed]
    [Google Scholar]
  16. Palmenberg A. C.. ( 1990;). Proteolytic processing of picornaviral polyprotein. . Annu Rev Microbiol 44:, 603–623. [CrossRef][PubMed]
    [Google Scholar]
  17. Palmenberg A. C., Kirby E. M., Janda M. R., Drake N. L., Duke G. M., Potratz K. F., Collett M. S.. ( 1984;). The nucleotide and deduced amino acid sequences of the encephalomyocarditis viral polyprotein coding region. . Nucleic Acids Res 12:, 2969–2985. [CrossRef][PubMed]
    [Google Scholar]
  18. Palmenberg A. C., Parks G. D., Hall D. J., Ingraham R. H., Seng T. W., Pallai P. V.. ( 1992;). Proteolytic processing of the cardioviral P2 region: primary 2A/2B cleavage in clone-derived precursors. . Virology 190:, 754–762. [CrossRef][PubMed]
    [Google Scholar]
  19. Parks G. D., Palmenberg A. C.. ( 1987;). Site-specific mutations at a picornavirus VP3/VP1 cleavage site disrupt in vitro processing and assembly of capsid precursors. . J Virol 61:, 3680–3687.[PubMed]
    [Google Scholar]
  20. Rieder E., Bunch T., Brown F., Mason P. W.. ( 1993;). Genetically engineered foot-and-mouth disease viruses with poly(C) tracts of two nucleotides are virulent in mice. . J Virol 67:, 5139–5145.[PubMed]
    [Google Scholar]
  21. Rieder E., Henry T., Duque H., Baxt B.. ( 2005;). Analysis of a foot-and-mouth disease virus type A24 isolate containing an SGD receptor recognition site in vitro and its pathogenesis in cattle. . J Virol 79:, 12989–12998. [CrossRef][PubMed]
    [Google Scholar]
  22. Roos R. P., Kong W. P., Semler B. L.. ( 1989;). Polyprotein processing of Theiler’s murine encephalomyelitis virus. . J Virol 63:, 5344–5353.[PubMed]
    [Google Scholar]
  23. Ryan M. D., Drew J.. ( 1994;). Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. . EMBO J 13:, 928–933.[PubMed]
    [Google Scholar]
  24. Ryan M. D., King A. M., Thomas G. P.. ( 1991;). Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. . J Gen Virol 72:, 2727–2732. [CrossRef][PubMed]
    [Google Scholar]
  25. Villarreal D., Young C. R., Storts R., Ting J. W., Welsh C. J.. ( 2006;). A comparison of the neurotropism of Theiler’s virus and poliovirus in CBA mice. . Microb Pathog 41:, 149–156. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.047571-0
Loading
/content/journal/jgv/10.1099/vir.0.047571-0
Loading

Data & Media loading...

Supplements

Supplementary table 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error