1887

Abstract

Immunization of different species including goats, rats, hamsters and guinea pigs with the recombinant ectodomain of the transmembrane envelope (TM) protein p15E of porcine endogenous retrovirus (PERV) has been shown to result in the production of virus-neutralizing antibodies. The sera recognize two groups of epitopes, one located in the fusion peptide-proximal region (FPPR) and the second in the membrane-proximal external region (MPER) of p15E. Most interestingly, the epitopes in the MPER are similar to epitopes in the TM protein gp41 of human immunodeficiency virus type 1 (HIV-1) recognized by mAbs 2F5 and 4E10, which broadly neutralize HIV-1. To study which epitope and which antibody population are involved in the process of neutralization of PERV, this study generated a new antiserum in a goat using an elongated ectodomain of p15E. The immune serum neutralized PERV at a higher titre and recognized broader epitopes in the FPPR and MPER of p15E. For the first time, antibody subpopulations were isolated from this serum using affinity chromatography with immobilized proteins and peptides corresponding to the FPPR and MPER of p15E. Only the affinity-purified antibodies specifically binding the MPER neutralized PERV, indicating that, as in the case of HIV-1, the MPER is an important target of neutralizing activity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.047399-0
2013-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/3/643.html?itemId=/content/journal/jgv/10.1099/vir.0.047399-0&mimeType=html&fmt=ahah

References

  1. Arnold G. F., Velasco P. K., Holmes A. K., Wrin T., Geisler S. C., Phung P., Tian Y., Resnick D. A., Ma X.other authors 2009; Broad neutralization of human immunodeficiency virus type 1 (HIV-1) elicited from human rhinoviruses that display the HIV-1 gp41 ELDKWA epitope. J Virol 83:5087–5100 [View Article][PubMed]
    [Google Scholar]
  2. Behrendt R., Fiebig U., Kurth R., Denner J. 2012; Induction of antibodies binding to the membrane proximal external region of gp36 of HIV-2. Intervirology 55:252–256 [View Article][PubMed]
    [Google Scholar]
  3. Bellamy-McIntyre A. K., Lay C. S., Baär S., Maerz A. L., Talbo G. H., Drummer H. E., Poumbourios P. 2007; Functional links between the fusion peptide-proximal polar segment and membrane-proximal region of human immunodeficiency virus gp41 in distinct phases of membrane fusion. J Biol Chem 282:23104–23116 [View Article][PubMed]
    [Google Scholar]
  4. Binley J. M., Wrin T., Korber B., Zwick M. B., Wang M., Chappey C., Stiegler G., Kunert R., Zolla-Pazner S.other authors 2004; Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J Virol 78:13232–13252 [View Article][PubMed]
    [Google Scholar]
  5. Chiang C.-Y., Pan Y.-R., Chou L.-F., Fang C.-Y., Wang S.-R., Yang C.-Y., Chang H.-Y. 2007; Functional epitopes on porcine endogenous retrovirus envelope protein interacting with neutralizing antibody combining sites. Virology 361:364–371 [View Article][PubMed]
    [Google Scholar]
  6. de la Arada I., Julien J.-P., de la Torre B. G., Huarte N., Andreu D., Pai E. F., Arrondo J. L., Nieva J. L. 2009; Structural constraints imposed by the conserved fusion peptide on the HIV-1 gp41 epitope recognized by the broadly neutralizing antibody 2F5. J Phys Chem B 113:13626–13637 [View Article][PubMed]
    [Google Scholar]
  7. Denner J. 2011; Towards an AIDS vaccine: the transmembrane envelope protein as target for broadly neutralizing antibodies. Hum Vaccin 7:Suppl.4–9 [View Article][PubMed]
    [Google Scholar]
  8. Fiebig U., Stephan O., Kurth R., Denner J. 2003; Neutralizing antibodies against conserved domains of p15E of porcine endogenous retroviruses: basis for a vaccine for xenotransplantation?. Virology 307:406–413 [View Article][PubMed]
    [Google Scholar]
  9. Fiebig U., Hartmann M. G., Bannert N., Kurth R., Denner J. 2006; Transspecies transmission of the endogenous koala retrovirus. J Virol 80:5651–5654 [View Article][PubMed]
    [Google Scholar]
  10. Fiebig U., Schmolke M., Eschricht M., Kurth R., Denner J. 2009; Mode of interaction between the HIV-1-neutralizing monoclonal antibody 2F5 and its epitope. AIDS 23:887–895 [View Article][PubMed]
    [Google Scholar]
  11. Gallo S. A., Finnegan C. M., Viard M., Raviv Y., Dimitrov A., Rawat S. S., Puri A., Durell S., Blumenthal R. 2003; The HIV Env-mediated fusion reaction. Biochim Biophys Acta 1614:36–50 [View Article][PubMed]
    [Google Scholar]
  12. Karlas A., Irgang M., Votteler J., Specke V., Ozel M., Kurth R., Denner J. 2010; Characterisation of a human cell-adapted porcine endogenous retrovirus PERV-A/C. Ann Transplant 15:45–54[PubMed]
    [Google Scholar]
  13. Kaulitz D., Fiebig U., Eschricht M., Wurzbacher C., Kurth R., Denner J. 2011; Generation of neutralising antibodies against porcine endogenous retroviruses (PERVs). Virology 411:78–86 [View Article][PubMed]
    [Google Scholar]
  14. Langhammer S., Fiebig U., Kurth R., Denner J. 2005; Neutralising antibodies against the transmembrane protein of feline leukaemia virus (FeLV). Vaccine 23:3341–3348 [View Article][PubMed]
    [Google Scholar]
  15. Langhammer S., Hübner J., Kurth R., Denner J. 2006; Antibodies neutralizing feline leukaemia virus (FeLV) in cats immunized with the transmembrane envelope protein p15E. Immunology 117:229–237 [View Article][PubMed]
    [Google Scholar]
  16. Langhammer S., Fiebig U., Kurth R., Denner J. 2011a; Increased neutralizing antibody response after simultaneous immunization with leucogen and the feline leukemia virus transmembrane protein. Intervirology 54:78–86 [View Article][PubMed]
    [Google Scholar]
  17. Langhammer S., Hübner J., Jarrett O., Kurth R., Denner J. 2011b; Immunization with the transmembrane protein of a retrovirus, feline leukemia virus: absence of antigenemia following challenge. Antiviral Res 89:119–123 [View Article][PubMed]
    [Google Scholar]
  18. Law M., Cardoso R. M., Wilson I. A., Burton D. R. 2007; Antigenic and immunogenic study of membrane-proximal external region-grafted gp120 antigens by a DNA prime-protein boost immunization strategy. J Virol 81:4272–4285 [View Article][PubMed]
    [Google Scholar]
  19. Lay C. S., Ludlow L. E., Stapleton D., Bellamy-McIntyre A. K., Ramsland P. A., Drummer H. E., Poumbourios P. 2011; Role for the terminal clasp of HIV-1 gp41 glycoprotein in the initiation of membrane fusion. J Biol Chem 286:41331–41343 [View Article][PubMed]
    [Google Scholar]
  20. Ma B.-J., Alam S. M., Go E. P., Lu X., Desaire H., Tomaras G. D., Bowman C., Sutherland L. L., Scearce R. M.other authors 2011; Envelope deglycosylation enhances antigenicity of HIV-1 gp41 epitopes for both broad neutralizing antibodies and their unmutated ancestor antibodies. PLoS Pathog 7:e1002200 [View Article][PubMed]
    [Google Scholar]
  21. Mantis N. J., Kozlowski P. A., Mielcarz D. W., Weissenhorn W., Neutra M. R. 2001; Immunization of mice with recombinant gp41 in a systemic prime/mucosal boost protocol induces HIV-1-specific serum IgG and secretory IgA antibodies. Vaccine 19:3990–4001 [View Article][PubMed]
    [Google Scholar]
  22. Montero M., van Houten N. E., Wang X., Scott J. K. 2008; The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Microbiol Mol Biol Rev 72:54–84 [View Article][PubMed]
    [Google Scholar]
  23. Munier C. M., Andersen C. R., Kelleher A. D. 2011; HIV vaccines: progress to date. Drugs 71:387–414[PubMed]
    [Google Scholar]
  24. Muster T., Steindl F., Purtscher M., Trkola A., Klima A., Himmler G., Rüker F., Katinger H. 1993; A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol 67:6642–6647[PubMed]
    [Google Scholar]
  25. Nieva J. L., Apellaniz B., Huarte N., Lorizate M. 2011; A new paradigm in molecular recognition? Specific antibody binding to membrane-inserted HIV-1 epitopes. J Mol Recognit 24:642–646 [View Article][PubMed]
    [Google Scholar]
  26. Pan C., Liu S., Jiang S. 2010; HIV-1 gp41 fusion intermediate: a target for HIV therapeutics. J Formos Med Assoc 109:94–105 [View Article][PubMed]
    [Google Scholar]
  27. Schägger H., von Jagow G. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379 [View Article][PubMed]
    [Google Scholar]
  28. Tusnády G. E., Simon I. 2001; The hmmtop transmembrane topology prediction server. Bioinformatics 17:849–850 [View Article][PubMed]
    [Google Scholar]
  29. Van Regenmortel M. H. 2011; Limitations to the structure-based design of HIV-1 vaccine immunogens. J Mol Recognit 24:741–753 [View Article][PubMed]
    [Google Scholar]
  30. Walker L. M., Burton D. R. 2010; Rational antibody-based HIV-1 vaccine design: current approaches and future directions. Curr Opin Immunol 22:358–366 [View Article][PubMed]
    [Google Scholar]
  31. Wang J., Tong P., Lu L., Zhou L., Xu L., Jiang S., Chen Y.-H. 2011; HIV-1 gp41 core with exposed membrane-proximal external region inducing broad HIV-1 neutralizing antibodies. PLoS ONE 6:e18233 [View Article][PubMed]
    [Google Scholar]
  32. Zwick M. B., Labrijn A. F., Wang M., Spenlehauer C., Saphire E. O., Binley J. M., Moore J. P., Stiegler G., Katinger H.other authors 2001; Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol 75:10892–10905 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.047399-0
Loading
/content/journal/jgv/10.1099/vir.0.047399-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error