1887

Abstract

Begomoviruses are ssDNA plant viruses that cause serious epidemics in economically important crops worldwide. Non-cultivated plants also harbour many begomoviruses, and it is believed that these hosts may act as reservoirs and as mixing vessels where recombination may occur. Begomoviruses are notoriously recombination-prone, and also display nucleotide substitution rates equivalent to those of RNA viruses. In Brazil, several indigenous begomoviruses have been described infecting tomatoes following the introduction of a novel biotype of the whitefly vector in the mid-1990s. More recently, a number of viruses from non-cultivated hosts have also been described. Previous work has suggested that viruses infecting non-cultivated hosts have a higher degree of genetic variability compared with crop-infecting viruses. We intensively sampled cultivated and non-cultivated plants in similarly sized geographical areas known to harbour either the weed-infecting (MaYSV) or the crop-infecting (ToSRV), and compared the molecular evolution and population genetics of these two distantly related begomoviruses. The results reinforce the assertion that infection of non-cultivated plant species leads to higher levels of standing genetic variability, and indicate that recombination, not adaptive selection, explains the higher begomovirus variability in non-cultivated hosts.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.047241-0
2013-02-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/2/418.html?itemId=/content/journal/jgv/10.1099/vir.0.047241-0&mimeType=html&fmt=ahah

References

  1. Ala-Poikela M. , Svensson E. , Rojas A. , Horko T. , Paulin L. , Valkonen J. P. T. , Kvarnheden A. . ( 2005; ). Genetic diversity and mixed infections of begomoviruses infecting tomato, pepper and cucurbit crops in Nicaragua. . Plant Pathol 54:, 448–459. [CrossRef]
    [Google Scholar]
  2. Alabi O. J. , Ogbe F. O. , Bandyopadhyay R. , Dixon A. G. , Hughes J. , Naidu R. A. . ( 2007; ). The occurrence of African cassava mosaic virus and East African cassava mosaic Cameroon virus in natural hosts other than cassava in Nigeria. . Phytopathology 97:, S3.
    [Google Scholar]
  3. Alabi O. J. , Ogbe F. O. , Bandyopadhyay R. , Lava Kumar P. , Dixon A. G. O. , Hughes J. D. , Naidu R. A. . ( 2008; ). Alternate hosts of African cassava mosaic virus and East African cassava mosaic Cameroon virus in Nigeria. . Arch Virol 153:, 1743–1747. [CrossRef] [PubMed]
    [Google Scholar]
  4. Barbosa J. C. , Barreto S. S. , Inoue-Nagata A. K. , Reis M. S. , Firmino A. C. , Bergamin Filho A. , Rezende J. A. M. . ( 2009; ). Natural infection of Nicandra physaloides by Tomato severe rugose virus in Brazil. . J Gen Plant Pathol 75:, 440–443. [CrossRef]
    [Google Scholar]
  5. Bedford I. D. , Kelly A. , Banks G. K. , Briddon R. W. , Cenis J. L. , Markham P. G. . ( 1998; ). Solanum nigrum: an indigenous weed reservoir for a tomato yellow leaf curl geminivirus in southern Spain. . Eur J Plant Pathol 104:, 221–222. [CrossRef]
    [Google Scholar]
  6. Berrie L. C. , Rybicki E. P. , Rey M. E. C. . ( 2001; ). Complete nucleotide sequence and host range of South African cassava mosaic virus: further evidence for recombination amongst begomoviruses. . J Gen Virol 82:, 53–58.[PubMed]
    [Google Scholar]
  7. Bezerra-Agasie I. C. , Ferreira G. B. , Ávila A. C. , Inoue-Nagata A. K. . ( 2006; ). First report of Tomato severe rugose virus in chili pepper in Brazil. . Plant Dis 90:, 114.[CrossRef]
    [Google Scholar]
  8. Blair M. W. , Basset M. J. , Abouzid A. M. , Hiebert E. , Polston J. E. , McMillan R. T. , Graves W. , Lamberts M. . ( 1995; ). Ocurrence of bean golden mosaic virus in Florida. . Plant Dis 79:, 529–533. [CrossRef]
    [Google Scholar]
  9. Briddon R. W. , Bedford I. D. , Tsai J. H. , Markham P. G. . ( 1996; ). Analysis of the nucleotide sequence of the treehopper-transmitted geminivirus, tomato pseudo-curly top virus, suggests a recombinant origin. . Virology 219:, 387–394. [CrossRef] [PubMed]
    [Google Scholar]
  10. Brown J. K. , Bird J. . ( 1992; ). Whitefly-transmitted geminiviruses and associated disorders in the Americas and the Caribbean basin. . Plant Dis 76:, 220–225. [CrossRef]
    [Google Scholar]
  11. Brown J. K. , Fauquet C. M. , Briddon R. W. , Zerbini F. M. , Moriones E. , Navas-Castillo J. . ( 2012; ). Family Geminiviridae . . In Virus Taxonomy 9th Report of the International Committee on Taxonomy of Viruses, pp. 351–373. Edited by King A. M. Q. , Adams M. J. , Carstens E. B. , Lefkowitz E. J. . . London, UK:: Elsevier Academic Press;.
    [Google Scholar]
  12. Bull S. E. , Briddon R. W. , Sserubombwe W. S. , Ngugi K. , Markham P. G. , Stanley J. . ( 2006; ). Genetic diversity and phylogeography of cassava mosaic viruses in Kenya. . J Gen Virol 87:, 3053–3065. [CrossRef] [PubMed]
    [Google Scholar]
  13. Chare E. R. , Holmes E. C. . ( 2004; ). Selection pressures in the capsid genes of plant RNA viruses reflect mode of transmission. . J Gen Virol 85:, 3149–3157. [CrossRef] [PubMed]
    [Google Scholar]
  14. Davino S. , Napoli C. , Dellacroce C. , Miozzi L. , Noris E. , Davino M. , Accotto G. P. . ( 2009; ). Two new natural begomovirus recombinants associated with the tomato yellow leaf curl disease co-exist with parental viruses in tomato epidemics in Italy. . Virus Res 143:, 15–23. [CrossRef] [PubMed]
    [Google Scholar]
  15. Doyle J. J. , Doyle J. L. . ( 1987; ). A rapid DNA isolation procedure for small amounts of fresh leaf tissue. . Phytochem Bull 19:, 11–15.
    [Google Scholar]
  16. Duffy S. , Holmes E. C. . ( 2008; ). Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus Tomato yellow leaf curl virus . . J Virol 82:, 957–965. [CrossRef] [PubMed]
    [Google Scholar]
  17. Duffy S. , Holmes E. C. . ( 2009; ). Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. . J Gen Virol 90:, 1539–1547. [CrossRef] [PubMed]
    [Google Scholar]
  18. Edgar R. C. . ( 2004; ). muscle: a multiple sequence alignment method with reduced time and space complexity. . BMC Bioinformatics 5:, 113. [CrossRef] [PubMed]
    [Google Scholar]
  19. Fernandes F. R. , de Albuquerque L. C. , de Britto Giordano L. , Boiteux L. S. , de Avila A. C. , Inoue-Nagata A. K. . ( 2008; ). Diversity and prevalence of Brazilian bipartite begomovirus species associated to tomatoes. . Virus Genes 36:, 251–258. [CrossRef] [PubMed]
    [Google Scholar]
  20. Fiallo-Olivé E. , Navas-Castillo J. , Moriones E. , Martínez-Zubiaur Y. . ( 2012; ). Begomoviruses infecting weeds in Cuba: increased host range and a novel virus infecting Sida rhombifolia . . Arch Virol 157:, 141–146. [CrossRef] [PubMed]
    [Google Scholar]
  21. Fondong V. N. , Pita J. S. , Rey M. E. C. , de Kochko A. , Beachy R. N. , Fauquet C. M. . ( 2000; ). Evidence of synergism between African cassava mosaic virus and a new double-recombinant geminivirus infecting cassava in Cameroon. . J Gen Virol 81:, 287–297.[PubMed]
    [Google Scholar]
  22. Fu Y. X. , Li W. H. . ( 1993; ). Statistical tests of neutrality of mutations. . Genetics 133:, 693–709.[PubMed]
    [Google Scholar]
  23. García-Andrés S. , Monci F. , Navas-Castillo J. , Moriones E. . ( 2006; ). Begomovirus genetic diversity in the native plant reservoir Solanum nigrum: evidence for the presence of a new virus species of recombinant nature. . Virology 350:, 433–442. [CrossRef] [PubMed]
    [Google Scholar]
  24. García-Andrés S. , Accotto G. P. , Navas-Castillo J. , Moriones E. . ( 2007a; ). Founder effect, plant host, and recombination shape the emergent population of begomoviruses that cause the tomato yellow leaf curl disease in the Mediterranean basin. . Virology 359:, 302–312. [CrossRef] [PubMed]
    [Google Scholar]
  25. García-Andrés S. , Tomás D. M. , Sánchez-Campos S. , Navas-Castillo J. , Moriones E. . ( 2007b; ). Frequent occurrence of recombinants in mixed infections of tomato yellow leaf curl disease-associated begomoviruses. . Virology 365:, 210–219. [CrossRef] [PubMed]
    [Google Scholar]
  26. García-Arenal F. , Fraile A. , Malpica J. M. . ( 2003; ). Variation and evolution of plant virus populations. . Int Microbiol 6:, 225–232. [CrossRef] [PubMed]
    [Google Scholar]
  27. Gilbertson R. L. , Faria J. C. , Ahlquist P. , Maxwell D. P. . ( 1993; ). Genetic diversity in geminiviruses causing bean golden mosaic disease: the nucleotide sequence of the infectious cloned DNA components of a Brazilian isolate of bean golden mosaic geminivirus. . Phytopathology 83:, 709–715. [CrossRef]
    [Google Scholar]
  28. González-Aguilera A. , Tavares S. S. , Ramos-Sobrinho R. , Xavier C. A. D. , Dueñas-Hurtado F. , Lara-Rodrigues R. M. , Silva D. J. H. , Zerbini F. M. . ( 2012; ). Genetic structure of a Brazilian population of the begomovirus Tomato severe rugose virus (ToSRV). . Trop Plant Pathol 37:, 346–353. [CrossRef]
    [Google Scholar]
  29. Graham A. P. , Martin D. P. , Roye M. E. . ( 2010; ). Molecular characterization and phylogeny of two begomoviruses infecting Malvastrum americanum in Jamaica: evidence of the contribution of inter-species recombination to the evolution of malvaceous weed-associated begomoviruses from the northern Caribbean. . Virus Genes 40:, 256–266. [CrossRef] [PubMed]
    [Google Scholar]
  30. Hanley-Bowdoin L. , Settlage S. B. , Robertson D. . ( 2004; ). Reprogramming plant gene expression: a prerequisite to geminivirus DNA replication. . Mol Plant Pathol 5:, 149–156. [CrossRef] [PubMed]
    [Google Scholar]
  31. Harrison B. D. , Robinson D. J. . ( 1999; ). Natural genomic and antigenic variation in white-fly transmitted geminiviruses (begomoviruses). . Annu Rev Phytopathol 37:, 369–398. [CrossRef]
    [Google Scholar]
  32. Harrison B. D. , Zhou X. , Otim Nape G. W. , Liu Y. , Robinson D. J. . ( 1997; ). Role of a novel type of double infection in the geminivirus-induced epidemic of severe cassava mosaic in Uganda. . Ann Appl Biol 131:, 437–448. [CrossRef]
    [Google Scholar]
  33. Ilyina T. V. , Koonin E. V. . ( 1992; ). Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. . Nucleic Acids Res 20:, 3279–3285. [CrossRef] [PubMed]
    [Google Scholar]
  34. Inoue-Nagata A. K. , Albuquerque L. C. , Rocha W. B. , Nagata T. . ( 2004; ). A simple method for cloning the complete begomovirus genome using the bacteriophage phi 29 DNA polymerase. . J Virol Met 116:, 209–211. [CrossRef]
    [Google Scholar]
  35. Jeske H. , Lütgemeier M. , Preiss W. . ( 2001; ). DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus. . EMBO J 20:, 6158–6167. [CrossRef] [PubMed]
    [Google Scholar]
  36. Kosakovsky Pond S. L. , Frost S. D. W. . ( 2005; ). Not so different after all: a comparison of methods for detecting amino acid sites under selection. . Mol Biol Evol 22:, 1208–1222. [CrossRef] [PubMed]
    [Google Scholar]
  37. Lefeuvre P. , Lett J. M. , Reynaud B. , Martin D. P. . ( 2007a; ). Avoidance of protein fold disruption in natural virus recombinants. . PLoS Pathog 3:, e181. [CrossRef] [PubMed]
    [Google Scholar]
  38. Lefeuvre P. , Martin D. P. , Hoareau M. , Naze F. , Delatte H. , Thierry M. , Varsani A. , Becker N. , Reynaud B. , Lett J. M. . ( 2007b; ). Begomovirus ‘melting pot’ in the south-west Indian Ocean islands: molecular diversity and evolution through recombination. . J Gen Virol 88:, 3458–3468. [CrossRef] [PubMed]
    [Google Scholar]
  39. Lefeuvre P. , Lett J. M. , Varsani A. , Martin D. P. . ( 2009; ). Widely conserved recombination patterns among single-stranded DNA viruses. . J Virol 83:, 2697–2707. [CrossRef] [PubMed]
    [Google Scholar]
  40. Legg J. P. , Fauquet C. M. . ( 2004; ). Cassava mosaic geminiviruses in Africa. . Plant Mol Biol 56:, 585–599. [CrossRef] [PubMed]
    [Google Scholar]
  41. Legg J. P. , Thresh J. M. . ( 2000; ). Cassava mosaic virus disease in East Africa: a dynamic disease in a changing environment. . Virus Res 71:, 135–149. [CrossRef] [PubMed]
    [Google Scholar]
  42. Londoño A. , Riego-Ruiz L. , Argüello-Astorga G. R. . ( 2010; ). DNA-binding specificity determinants of replication proteins encoded by eukaryotic ssDNA viruses are adjacent to widely separated RCR conserved motifs. . Arch Virol 155:, 1033–1046. [CrossRef] [PubMed]
    [Google Scholar]
  43. Lozano G. , Trenado H. P. , Valverde R. A. , Navas-Castillo J. . ( 2009; ). Novel begomovirus species of recombinant nature in sweet potato (Ipomoea batatas) and Ipomoea indica: taxonomic and phylogenetic implications. . J Gen Virol 90:, 2550–2562. [CrossRef] [PubMed]
    [Google Scholar]
  44. Martin D. P. , van der Walt E. , Posada D. , Rybicki E. P. . ( 2005; ). The evolutionary value of recombination is constrained by genome modularity. . PLoS Genet 1:, e51. [CrossRef] [PubMed]
    [Google Scholar]
  45. Martin D. P. , Lemey P. , Lott M. , Moulton V. , Posada D. , Lefeuvre P. . ( 2010; ). RDP3: a flexible and fast computer program for analyzing recombination. . Bioinformatics 26:, 2462–2463. [CrossRef] [PubMed]
    [Google Scholar]
  46. Martin D. P. , Lefeuvre P. , Varsani A. , Hoareau M. , Semegni J. Y. , Dijoux B. , Vincent C. , Reynaud B. , Lett J. M. . ( 2011; ). Complex recombination patterns arising during geminivirus coinfections preserve and demarcate biologically important intra-genome interaction networks. . PLoS Pathog 7:, e1002203. [CrossRef] [PubMed]
    [Google Scholar]
  47. Monci F. , Sánchez-Campos S. , Navas-Castillo J. , Moriones E. . ( 2002; ). A natural recombinant between the geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. . Virology 303:, 317–326. [CrossRef] [PubMed]
    [Google Scholar]
  48. Monde G. , Walangululu J. , Winter S. , Bragard C. . ( 2010; ). Dual infection by cassava begomoviruses in two leguminous species (Fabaceae) in Yangambi, Northeastern Democratic Republic of Congo. . Arch Virol 155:, 1865–1869. [CrossRef] [PubMed]
    [Google Scholar]
  49. Morales F. J. , Anderson P. K. . ( 2001; ). The emergence and dissemination of whitefly-transmitted geminiviruses in Latin America. . Arch Virol 146:, 415–441. [CrossRef] [PubMed]
    [Google Scholar]
  50. Morales F. J. , Jones P. G. . ( 2004; ). The ecology and epidemiology of whitefly-transmitted viruses in Latin America. . Virus Res 100:, 57–65. [CrossRef] [PubMed]
    [Google Scholar]
  51. Morilla G. , Krenz B. , Jeske H. , Bejarano E. R. , Wege C. . ( 2004; ). Tête à tête of tomato yellow leaf curl virus and tomato yellow leaf curl sardinia virus in single nuclei. . J Virol 78:, 10715–10723. [CrossRef] [PubMed]
    [Google Scholar]
  52. Moriones E. , Navas-Castillo J. . ( 2000; ). Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. . Virus Res 71:, 123–134. [CrossRef] [PubMed]
    [Google Scholar]
  53. Navas-Castillo J. , Sánchez-Campos S. , Noris E. , Louro D. , Accotto G. P. , Moriones E. . ( 2000; ). Natural recombination between Tomato yellow leaf curl virus-is and Tomato leaf curl virus . . J Gen Virol 81:, 2797–2801.[PubMed]
    [Google Scholar]
  54. Ndunguru J. , Legg J. P. , Aveling T. A. , Thompson G. , Fauquet C. M. . ( 2005; ). Molecular biodiversity of cassava begomoviruses in Tanzania: evolution of cassava geminiviruses in Africa and evidence for East Africa being a center of diversity of cassava geminiviruses. . Virol J 2:, 21. [CrossRef] [PubMed]
    [Google Scholar]
  55. Orozco B. M. , Kong L. J. , Batts L. A. , Elledge S. , Hanley-Bowdoin L. . ( 2000; ). The multifunctional character of a geminivirus replication protein is reflected by its complex oligomerization properties. . J Biol Chem 275:, 6114–6122. [CrossRef] [PubMed]
    [Google Scholar]
  56. Padidam M. , Sawyer S. , Fauquet C. M. . ( 1999; ). Possible emergence of new geminiviruses by frequent recombination. . Virology 265:, 218–225. [CrossRef] [PubMed]
    [Google Scholar]
  57. Pita J. S. , Fondong V. N. , Sangaré A. , Otim-Nape G. W. , Ogwal S. , Fauquet C. M. . ( 2001; ). Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. . J Gen Virol 82:, 655–665.[PubMed]
    [Google Scholar]
  58. Polston J. E. , Anderson P. K. . ( 1997; ). The emergence of whitefly-transmitted geminiviruses in tomato in the western hemisphere. . Plant Dis 81:, 1358–1369. [CrossRef]
    [Google Scholar]
  59. Posada D. , Crandall K. A. . ( 1998; ). modeltest: testing the model of DNA substitution. . Bioinformatics 14:, 817–818. [CrossRef] [PubMed]
    [Google Scholar]
  60. Posada D. , Crandall K. A. . ( 2002; ). The effect of recombination on the accuracy of phylogeny estimation. . J Mol Evol 54:, 396–402.[PubMed] [CrossRef]
    [Google Scholar]
  61. Power A. G. . ( 2000; ). Insect transmission of plant viruses: a constraint on virus variability. . Curr Opin Plant Biol 3:, 336–340. [CrossRef] [PubMed]
    [Google Scholar]
  62. Prasanna H. C. , Rai M. . ( 2007; ). Detection and frequency of recombination in tomato-infecting begomoviruses of South and Southeast Asia. . Virol J 4:, 111. [CrossRef] [PubMed]
    [Google Scholar]
  63. Reddy R. V. C. , Colvin J. , Muniyappa V. , Seal S. . ( 2005; ). Diversity and distribution of begomoviruses infecting tomato in India. . Arch Virol 150:, 845–867. [CrossRef] [PubMed]
    [Google Scholar]
  64. Ribeiro S. G. , Ambrozevícius L. P. , Ávila A. C. , Bezerra I. C. , Calegario R. F. , Fernandes J. J. , Lima M. F. , de Mello R. N. , Rocha H. , Zerbini F. M. . ( 2003; ). Distribution and genetic diversity of tomato-infecting begomoviruses in Brazil. . Arch Virol 148:, 281–295. [CrossRef] [PubMed]
    [Google Scholar]
  65. Rocha C. S. . ( 2011; ). Variability and genetic structure of begomovirus populations infecting tomato and non-cultivated hosts in southwestern Brazil. DS Thesis, Dep de Fitopatologia, 129 p. Viçosa, MG: Universidade Federal de Viçosa.
  66. Rojas M. R. , Hagen C. , Lucas W. J. , Gilbertson R. L. . ( 2005; ). Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. . Annu Rev Phytopathol 43:, 361–394. [CrossRef] [PubMed]
    [Google Scholar]
  67. Roossinck M. J. . ( 2003; ). Plant RNA virus evolution. . Curr Opin Microbiol 6:, 406–409. [CrossRef] [PubMed]
    [Google Scholar]
  68. Rothenstein D. , Haible D. , Dasgupta I. , Dutt N. , Patil B. L. , Jeske H. . ( 2006; ). Biodiversity and recombination of cassava-infecting begomoviruses from southern India. . Arch Virol 151:, 55–69. [CrossRef] [PubMed]
    [Google Scholar]
  69. Rozas J. , Sánchez-DelBarrio J. C. , Messeguer X. , Rozas R. . ( 2003; ). DnaSP, DNA polymorphism analyses by the coalescent and other methods. . Bioinformatics 19:, 2496–2497. [CrossRef] [PubMed]
    [Google Scholar]
  70. Sanz A. I. , Fraile A. , Gallego J. M. , Malpica J. M. , García-Arenal F. . ( 1999; ). Genetic variability of natural populations of cotton leaf curl geminivirus, a single-stranded DNA virus. . J Mol Evol 49:, 672–681. [CrossRef] [PubMed]
    [Google Scholar]
  71. Sanz A. I. , Fraile A. , García-Arenal F. , Zhou X. , Robinson D. J. , Khalid S. , Butt T. , Harrison B. D. . ( 2000; ). Multiple infection, recombination and genome relationships among begomovirus isolates found in cotton and other plants in Pakistan. . J Gen Virol 81:, 1839–1849.[PubMed]
    [Google Scholar]
  72. Saunders K. , Bedford I. D. , Stanley J. . ( 2001; ). Pathogenicity of a natural recombinant associated with ageratum yellow vein disease: implications for geminivirus evolution and disease aetiology. . Virology 282:, 38–47. [CrossRef] [PubMed]
    [Google Scholar]
  73. Scheffler K. , Martin D. P. , Seoighe C. . ( 2006; ). Robust inference of positive selection from recombining coding sequences. . Bioinformatics 22:, 2493–2499. [CrossRef] [PubMed]
    [Google Scholar]
  74. Schnippenkoetter W. H. , Martin D. P. , Willment J. A. , Rybicki E. P. . ( 2001; ). Forced recombination between distinct strains of Maize streak virus . . J Gen Virol 82:, 3081–3090.[PubMed]
    [Google Scholar]
  75. Seal S. E. , Jeger M. J. , Van den Bosch F. . ( 2006; ). Begomovirus evolution and disease management. . Adv Virus Res 67:, 297–316. [CrossRef] [PubMed]
    [Google Scholar]
  76. Silva S. J. , Castillo-Urquiza G. P. , Hora Júnior B. T. , Assunção I. P. , Lima G. S. A. , Pio-Ribeiro G. , Mizubuti E. S. G. , Zerbini F. M. . ( 2011; ). High genetic variability and recombination in a begomovirus population infecting the ubiquitous weed Cleome affinis in northeastern Brazil. . Arch Virol 156:, 2205–2213. [CrossRef] [PubMed]
    [Google Scholar]
  77. Silva S. J. C. , Castillo-Urquiza G. P. , Hora-Junior B. T. , Assunção I. P. , Lima G. S. A. , Pio-Ribeiro G. , Mizubuti E. S. G. , Zerbini F. M. . ( 2012; ). Species diversity, phylogeny and genetic variability of begomovirus populations infecting leguminous weeds in northeastern Brazil. . Plant Pathol 61:, 457–467. [CrossRef]
    [Google Scholar]
  78. Souza-Dias J. A. C. , Sawazaki H. E. , Pernambuco-Fo P. C. A. , Elias L. M. , Maluf H. . ( 2008; ). Tomato severe rugose virus: another begomovirus causing leaf deformation and mosaic symptoms on potato in Brazil. . Plant Dis 92:, 487–488. [CrossRef]
    [Google Scholar]
  79. Sserubombwe W. S. , Briddon R. W. , Baguma Y. K. , Ssemakula G. N. , Bull S. E. , Bua A. , Alicai T. , Omongo C. , Otim-Nape G. W. , Stanley J. . ( 2008; ). Diversity of begomoviruses associated with mosaic disease of cultivated cassava (Manihot esculenta Crantz) and its wild relative (Manihot glaziovii Mull. Arg.) in Uganda. . J Gen Virol 89:, 1759–1769. [CrossRef] [PubMed]
    [Google Scholar]
  80. Swofford D. L. . ( 2003; ). paup*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland, Massachusetts: Sinauer Associates.
  81. Tiendrébéogo F. , Lefeuvre P. , Hoareau M. , Harimalala M. A. , De Bruyn A. , Villemot J. , Traoré V. S. , Konaté G. , Traoré A. S. . & other authors ( 2012; ). Evolution of African cassava mosaic virus by recombination between bipartite and monopartite begomoviruses. . Virol J 9:, 67. [CrossRef] [PubMed]
    [Google Scholar]
  82. Torres-Pacheco I. , Garzón-Tiznado J. A. , Brown J. K. , Becerra-Flora A. , Rivera-Bustamante R. . ( 1996; ). Detection and distribution of geminiviruses in Mexico and the Southern United States. . Phytopathology 86:, 1186–1192. [CrossRef]
    [Google Scholar]
  83. Were H. K. , Winter S. , Maiss E. . ( 2004; ). Viruses infecting cassava in Kenya. . Plant Dis 88:, 17–22. [CrossRef]
    [Google Scholar]
  84. Wyant P. S. , Gotthardt D. , Schäfer B. , Krenz B. , Jeske H. . ( 2011; ). The genomes of four novel begomoviruses and a new Sida micrantha mosaic virus strain from Bolivian weeds. . Arch Virol 156:, 347–352. [CrossRef] [PubMed]
    [Google Scholar]
  85. Zerbini F. M. , Andrade E. C. , Barros D. R. , Ferreira S. S. , Lima A. T. M. , Alfenas P. F. , Mello R. N. . ( 2005; ). Traditional and novel strategies for geminivirus management in Brazil. . Australas Plant Pathol 34:, 475–480. [CrossRef]
    [Google Scholar]
  86. Zhou X. , Liu Y. , Calvert L. , Munoz C. , Otim-Nape G. W. , Robinson D. J. , Harrison B. D. . ( 1997; ). Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. . J Gen Virol 78:, 2101–2111.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.047241-0
Loading
/content/journal/jgv/10.1099/vir.0.047241-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error