1887

Abstract

Equine infectious anemia virus (EIAV), the causative agent of equine infectious anaemia (EIA), possesses the least-complex genomic organization of any known extant lentivirus. Despite this relative genetic simplicity, all of the complete genomic sequences published to date are derived from just two viruses, namely the North American EIAV (EIAV) and Chinese EIAV (EIAV) strains. In 2006, an outbreak of EIA occurred in Ireland, apparently as a result of the importation of contaminated horse plasma from Italy and subsequent iatrogenic transmission to foals. This EIA outbreak was characterized by cases of severe, sometimes fatal, disease. To begin to understand the molecular mechanisms underlying this pathogenic phenotype, complete proviral genomic sequences in the form of 12 overlapping PCR-generated fragments were obtained from four of the EIAV-infected animals, including two of the index cases. Sequence analysis of multiple molecular clones produced from each fragment demonstrated the extent of diversity within individual viral genes and permitted construction of consensus whole-genome sequences for each of the four viral isolates. In addition, complete gene sequences were obtained from 11 animals with differing clinical profiles, despite exposure to a common EIAV source. Although the overall genomic organization of the Irish EIAV isolates was typical of that seen in all other strains, the European viruses possessed ≤80 % nucleotide sequence identity with either EIAV or EIAV. Furthermore, phylogenetic analysis suggested that the Irish EIAV isolates developed independently of the North American and Chinese viruses and that they constitute a separate monophyletic group.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.047191-0
2013-03-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/3/612.html?itemId=/content/journal/jgv/10.1099/vir.0.047191-0&mimeType=html&fmt=ahah

References

  1. Amodeo P., Castiglione Morelli M. A., Ostuni A., Battistuzzi G., Bavoso A.. ( 2006;). Structural features in EIAV NCp11: a lentivirus nucleocapsid protein with a short linker. . Biochemistry 45:, 5517–5526. [CrossRef][PubMed]
    [Google Scholar]
  2. Belshan M., Harris M. E., Shoemaker A. E., Hope T. J., Carpenter S.. ( 1998;). Biological characterization of Rev variation in equine infectious anemia virus. . J Virol 72:, 4421–4426.[PubMed]
    [Google Scholar]
  3. Brangan P., Bailey D. C., Larkin J. F., Myers T., More S. J.. ( 2008;). Management of the national programme to eradicate equine infectious anaemia from Ireland during 2006: a review. . Equine Vet J 40:, 702–704. [CrossRef][PubMed]
    [Google Scholar]
  4. Capomaccio S., Cappelli K., Cook R. F., Nardi F., Gifford R., Marenzoni M. L., Passamonti F.. ( 2012;). Geographic structuring of global EIAV isolates: a single origin for New World strains?. Virus Res 163:, 656–659. [CrossRef][PubMed]
    [Google Scholar]
  5. Cappelli K., Capomaccio S., Cook F. R., Felicetti M., Marenzoni M. L., Coppola G., Verini-Supplizi A., Coletti M., Passamonti F.. ( 2011;). Molecular detection, epidemiology, and genetic characterization of novel European field isolates of equine infectious anemia virus. . J Clin Microbiol 49:, 27–33. [CrossRef][PubMed]
    [Google Scholar]
  6. Carroll R., Martarano L., Derse D.. ( 1991;). Identification of lentivirus Tat functional domains through generation of equine infectious anemia virus/human immunodeficiency virus type 1 tat gene chimeras. . J Virol 65:, 3460–3467.[PubMed]
    [Google Scholar]
  7. Carvalho M., Derse D.. ( 1991;). Mutational analysis of the equine infectious anemia virus Tat-responsive element. . J Virol 65:, 3468–3474.[PubMed]
    [Google Scholar]
  8. Chen C., Vincent O., Jin J., Weisz O. A., Montelaro R. C.. ( 2005;). Functions of early (AP-2) and late (AIP1/ALIX) endocytic proteins in equine infectious anemia virus budding. . J Biol Chem 280:, 40474–40480. [CrossRef][PubMed]
    [Google Scholar]
  9. Cook R. F., Leroux C., Cook S. J., Berger S. L., Lichtenstein D. L., Ghabrial N. N., Montelaro R. C., Issel C. J.. ( 1998;). Development and characterization of an in vivo pathogenic molecular clone of equine infectious anemia virus. . J Virol 72:, 1383–1393.[PubMed]
    [Google Scholar]
  10. Covaleda L., Fuller F. J., Payne S. L.. ( 2010a;). EIAV S2 enhances pro-inflammatory cytokine and chemokine response in infected macrophages. . Virology 397:, 217–223. [CrossRef][PubMed]
    [Google Scholar]
  11. Covaleda L., Gno B. T., Fuller F. J., Payne S. L.. ( 2010b;). Identification of cellular proteins interacting with equine infectious anemia virus S2 protein. . Virus Res 151:, 235–239. [CrossRef][PubMed]
    [Google Scholar]
  12. Craigo J. K., Durkin S., Sturgeon T. J., Tagmyer T., Cook S. J., Issel C. J., Montelaro R. C.. ( 2007a;). Immune suppression of challenged vaccinates as a rigorous assessment of sterile protection by lentiviral vaccines. . Vaccine 25:, 834–845. [CrossRef][PubMed]
    [Google Scholar]
  13. Craigo J. K., Zhang B., Barnes S., Tagmyer T. L., Cook S. J., Issel C. J., Montelaro R. C.. ( 2007b;). Envelope variation as a primary determinant of lentiviral vaccine efficacy. . Proc Natl Acad Sci U S A 104:, 15105–15110. [CrossRef][PubMed]
    [Google Scholar]
  14. Craigo J. K., Barnes S., Zhang B., Cook S. J., Howe L., Issel C. J., Montelaro R. C.. ( 2009;). An EIAV field isolate reveals much higher levels of subtype variability than currently reported for the equine lentivirus family. . Retrovirology 6:, 95. [CrossRef][PubMed]
    [Google Scholar]
  15. Cullinane A., Quinlivan M., Nelly M., Patterson H., Kenna R., Garvey M., Gildea S., Lyons P., Flynn M.. & other authors ( 2007;). Diagnosis of equine infectious anaemia during the 2006 outbreak in Ireland. . Vet Rec 161:, 647–652. [CrossRef][PubMed]
    [Google Scholar]
  16. Dauter Z., Persson R., Rosengren A. M., Nyman P. O., Wilson K. S., Cedergren-Zeppezauer E. S.. ( 1999;). Crystal structure of dUTPase from equine infectious anaemia virus; active site metal binding in a substrate analogue complex. . J Mol Biol 285:, 655–673. [CrossRef][PubMed]
    [Google Scholar]
  17. Davies J. F. II, Hostomska Z., Hostomsky Z., Jordan S. R., Matthews D. A.. ( 1991;). Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase. . Science 252:, 88–95. [CrossRef][PubMed]
    [Google Scholar]
  18. Derse D., Newbold S. H.. ( 1993;). Mutagenesis of EIAV TAT reveals structural features essential for transcriptional activation and TAR element recognition. . Virology 194:, 530–536. [CrossRef][PubMed]
    [Google Scholar]
  19. Doolittle R. F., Feng D.-F., Johnson M. S., McClure M. A.. ( 1989;). Origins and evolutionary relationships of retroviruses. . Q Rev Biol 64:, 1–30. [CrossRef][PubMed]
    [Google Scholar]
  20. Drummond A. J., Ashton B., Buxton S., Cheung M., Cooper A., Duran C., Field M., Heled J., Kearse M.. & other authors ( 2012;). Geneious v5.6. Available from http://www.geneious.com.
  21. Eijkelenboom A. P., van den Ent F. M., Vos A., Doreleijers J. F., Hård K., Tullius T. D., Plasterk R. H., Kaptein R., Boelens R.. ( 1997;). The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc. . Curr Biol 7:, 739–746. [CrossRef][PubMed]
    [Google Scholar]
  22. Eizert H., Bander P., Bagossi P., Sperka T., Miklóssy G., Boross P., Weber I. T., Tözsér J.. ( 2008;). Amino acid preferences of retroviral proteases for amino-terminal positions in a type 1 cleavage site. . J Virol 82:, 10111–10117. [CrossRef][PubMed]
    [Google Scholar]
  23. Engelman A., Craigie R.. ( 1992;). Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. . J Virol 66:, 6361–6369.[PubMed]
    [Google Scholar]
  24. Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R. D., Bairoch A.. ( 2003;). ExPASy: the proteomics server for in-depth protein knowledge and analysis. . Nucleic Acids Res 31:, 3784–3788. [CrossRef][PubMed]
    [Google Scholar]
  25. Gradinaru D. A., Stirbu C., Paltineanu D., Mironescu D., Manolescu N.. ( 1981;). Propagation of equine infectious anemia virus in horse cell cultures. . Virologie 32:, 23–27.
    [Google Scholar]
  26. Grund C. H., Lechman E. R., Issel C. J., Montelaro R. C., Rushlow K. E.. ( 1994;). Lentivirus cross-reactive determinants present in the capsid protein of equine infectious anaemia virus. . J Gen Virol 75:, 657–662. [CrossRef][PubMed]
    [Google Scholar]
  27. Hammond S. A., Li F., McKeon B. M. Sr, Cook S. J., Issel C. J., Montelaro R. C.. ( 2000;). Immune responses and viral replication in long-term inapparent carrier ponies inoculated with equine infectious anemia virus. . J Virol 74:, 5968–5981. [CrossRef][PubMed]
    [Google Scholar]
  28. Harris M. E., Gontarek R. R., Derse D., Hope T. J.. ( 1998;). Differential requirements for alternative splicing and nuclear export functions of equine infectious anemia virus Rev protein. . Mol Cell Biol 18:, 3889–3899.[PubMed]
    [Google Scholar]
  29. Hawkins J. A., Adams W. V., Cook L., Wilson B. H., Roth E. E.. ( 1973;). Role of horse fly (Tabanus fuscicostatus Hine) and stable fly (Stomoxys calcitrans L.) in transmission of equine infectious anemia to ponies in Louisiana. . Am J Vet Res 34:, 1583–1586.[PubMed]
    [Google Scholar]
  30. Hoffman D. W., White S. W.. ( 1995;). NMR analysis of the trans-activation response (TAR) RNA element of equine infectious anemia virus. . Nucleic Acids Res 23:, 4058–4065. [CrossRef][PubMed]
    [Google Scholar]
  31. Hussain K. A., Issel C. J., Schnorr K. L., Rwambo P. M., Montelaro R. C.. ( 1987;). Antigenic analysis of equine infectious anemia virus (EIAV) variants by using monoclonal antibodies: epitopes of glycoprotein gp90 of EIAV stimulate neutralizing antibodies. . J Virol 61:, 2956–2961.[PubMed]
    [Google Scholar]
  32. Issel C. J., Coggins L.. ( 1979;). Equine infectious anemia: current knowledge. . J Am Vet Med Assoc 174:, 727–733.[PubMed]
    [Google Scholar]
  33. Issel C. J., Adams W. V. Jr, Meek L., Ochoa R.. ( 1982;). Transmission of equine infectious anemia virus from horses without clinical signs of disease. . J Am Vet Med Assoc 180:, 272–275.[PubMed]
    [Google Scholar]
  34. Kobayashi K., Kono Y.. ( 1967;). Serial passages of equine infectious anemia virus in horse leukocyte culture. . Natl Inst Anim Health Q (Tokyo) 7:, 1–7.[PubMed]
    [Google Scholar]
  35. Kono Y., Kobayashi K., Fukunaga Y.. ( 1970;). Immunization of horses against equine infectious anemia (EIA) with an attenuated EIA virus. . Natl Inst Anim Health Q (Tokyo) 10:, 113–122.[PubMed]
    [Google Scholar]
  36. Kono Y., Hirasawa K., Fukunaga Y., Taniguchi T.. ( 1976;). Recrudescence of equine infectious anemia by treatment with immunosuppressive drugs. . Natl Inst Anim Health Q (Tokyo) 16:, 8–15.[PubMed]
    [Google Scholar]
  37. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  38. Lee J.-H., Murphy S. C., Belshan M., Sparks W. O., Wannemuehler Y., Liu S., Hope T. J., Dobbs D., Carpenter S.. ( 2006;). Characterization of functional domains of equine infectious anemia virus Rev suggests a bipartite RNA-binding domain. . J Virol 80:, 3844–3852. [CrossRef][PubMed]
    [Google Scholar]
  39. Leroux C., Issel C. J., Montelaro R. C.. ( 1997;). Novel and dynamic evolution of equine infectious anemia virus genomic quasispecies associated with sequential disease cycles in an experimentally infected pony. . J Virol 71:, 9627–9639.[PubMed]
    [Google Scholar]
  40. Leroux C., Craigo J. K., Issel C. J., Montelaro R. C.. ( 2001;). Equine infectious anemia virus genomic evolution in progressor and nonprogressor ponies. . J Virol 75:, 4570–4583. [CrossRef][PubMed]
    [Google Scholar]
  41. Li F., Leroux C., Craigo J. K., Cook S. J., Issel C. J., Montelaro R. C.. ( 2000;). The S2 gene of equine infectious anemia virus is a highly conserved determinant of viral replication and virulence properties in experimentally infected ponies. . J Virol 74:, 573–579. [CrossRef][PubMed]
    [Google Scholar]
  42. Li F., Chen C., Puffer B. A., Montelaro R. C.. ( 2002;). Functional replacement and positional dependence of homologous and heterologous L domains in equine infectious anemia virus replication. . J Virol 76:, 1569–1577. [CrossRef][PubMed]
    [Google Scholar]
  43. Liang H., He X., Shen R. X., Shen T., Tong X., Ma Y., Xiang W. H., Zhang X. Y., Shao Y. M.. ( 2006;). Combined amino acid mutations occurring in the envelope closely correlate with pathogenicity of EIAV. . Arch Virol 151:, 1387–1403. [CrossRef][PubMed]
    [Google Scholar]
  44. Lichtenstein D. L., Issel C. J., Montelaro R. C.. ( 1996;). Genomic quasispecies associated with the initiation of infection and disease in ponies experimentally infected with equine infectious anemia virus. . J Virol 70:, 3346–3354.[PubMed]
    [Google Scholar]
  45. Malmquist W. A., Barnett D., Becvar C. S.. ( 1973;). Production of equine infectious anemia antigen in a persistently infected cell line. . Arch Gesamte Virusforsch 42:, 361–370. [CrossRef][PubMed]
    [Google Scholar]
  46. Mancuso V. A., Hope T. J., Zhu L., Derse D., Phillips T., Parslow T. G.. ( 1994;). Posttranscriptional effector domains in the Rev proteins of feline immunodeficiency virus and equine infectious anemia virus. . J Virol 68:, 1998–2001.[PubMed]
    [Google Scholar]
  47. Martarano L., Stephens R., Rice N., Derse D.. ( 1994;). Equine infectious anemia virus trans-regulatory protein Rev controls viral mRNA stability, accumulation, and alternative splicing. . J Virol 68:, 3102–3111.[PubMed]
    [Google Scholar]
  48. Maury W., Bradley S., Wright B., Hines R.. ( 2000;). Cell specificity of the transcription-factor repertoire used by a lentivirus: motifs important for expression of equine infectious anemia virus in nonmonocytic cells. . Virology 267:, 267–278. [CrossRef][PubMed]
    [Google Scholar]
  49. Maury W., Wright P. J., Bradley S.. ( 2003;). Characterization of a cytolytic strain of equine infectious anemia virus. . J Virol 77:, 2385–2399. [CrossRef][PubMed]
    [Google Scholar]
  50. McGeoch D. J.. ( 1990;). Protein sequence comparisons show that the ‘pseudoproteases’ encoded by poxviruses and certain retroviruses belong to the deoxyuridine triphosphatase family. . Nucleic Acids Res 18:, 4105–4110. [CrossRef][PubMed]
    [Google Scholar]
  51. McGuire T. C., Leib S. R., Lonning S. M., Zhang W., Byrne K. M., Mealey R. H.. ( 2000;). Equine infectious anaemia virus proteins with epitopes most frequently recognized by cytotoxic T lymphocytes from infected horses. . J Gen Virol 81:, 2735–2739.[PubMed]
    [Google Scholar]
  52. Minin V. N., Dorman K. S., Fang F., Suchard M. A.. ( 2005;). Dual multiple change-point model leads to more accurate recombination detection. . Bioinformatics 21:, 3034–3042. [CrossRef][PubMed]
    [Google Scholar]
  53. More S. J., Aznar I., Bailey D. C., Larkin J. F., Leadon D. P., Lenihan P., Flaherty B., Fogarty U., Brangan P.. ( 2008;). An outbreak of equine infectious anaemia in Ireland during 2006: investigation methodology, initial source of infection, diagnosis and clinical presentation, modes of transmission and spread in the Meath cluster. . Equine Vet J 40:, 706–708. [CrossRef][PubMed]
    [Google Scholar]
  54. Payne S. L., Rausch J., Rushlow K., Montelaro R. C., Issel C., Flaherty M., Perry S., Sellon D., Fuller F.. ( 1994;). Characterization of infectious molecular clones of equine infectious anaemia virus. . J Gen Virol 75:, 425–429. [CrossRef][PubMed]
    [Google Scholar]
  55. Perry S. T., Flaherty M. T., Kelley M. J., Clabough D. L., Tronick S. R., Coggins L., Whetter L., Lengel C. R., Fuller F.. ( 1992;). The surface envelope protein gene region of equine infectious anemia virus is not an important determinant of tropism in vitro. . J Virol 66:, 4085–4097.[PubMed]
    [Google Scholar]
  56. Puffer B. A., Parent L. J., Wills J. W., Montelaro R. C.. ( 1997;). Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein. . J Virol 71:, 6541–6546.[PubMed]
    [Google Scholar]
  57. Puffer B. A., Watkins S. C., Montelaro R. C.. ( 1998;). Equine infectious anemia virus Gag polyprotein late domain specifically recruits cellular AP-2 adapter protein complexes during virion assembly. . J Virol 72:, 10218–10221.[PubMed]
    [Google Scholar]
  58. Quinlivan M., Cook R. F., Cullinane A.. ( 2007;). Real-time quantitative RT-PCR and PCR assays for a novel European field isolate of equine infectious anaemia virus based on sequence determination of the gag gene. . Vet Rec 160:, 611–618. [CrossRef][PubMed]
    [Google Scholar]
  59. Rozen S., Skaletsky H.. ( 2000;). Primer3 on the WWW for general users and for biologist programmers. . Methods Mol Biol 132:, 365–386.[PubMed]
    [Google Scholar]
  60. Shen T., Liang H., Tong X., Fan X., He X., Ma Y., Xiang W., Shen R., Zhang X., Shao Y.. ( 2006;). Amino acid mutations of the infectious clone from Chinese EIAV attenuated vaccine resulted in reversion of virulence. . Vaccine 24:, 738–749. [CrossRef][PubMed]
    [Google Scholar]
  61. Sponseller B. A., Sparks W. O., Wannemuehler Y., Li Y., Antons A. K., Oaks J. L., Carpenter S.. ( 2007;). Immune selection of equine infectious anemia virus env variants during the long-term inapparent stage of disease. . Virology 363:, 156–165. [CrossRef][PubMed]
    [Google Scholar]
  62. Steagall W. K., Robek M. D., Perry S. T., Fuller F. J., Payne S. L.. ( 1995;). Incorporation of uracil into viral DNA correlates with reduced replication of EIAV in macrophages. . Virology 210:, 302–313. [CrossRef][PubMed]
    [Google Scholar]
  63. Stephens R. M., Casey J. W., Rice N. R.. ( 1986;). Equine infectious anemia virus gag and pol genes: relatedness to Visna and AIDS virus. . Science 231:, 589–594. [CrossRef][PubMed]
    [Google Scholar]
  64. Suchard M. A., Weiss R. E., Dorman K. S., Sinsheimer J. S.. ( 2002;). Oh brother, where art thou? A Bayes factor test for recombination with uncertain heritage. . Syst Biol 51:, 715–728. [CrossRef][PubMed]
    [Google Scholar]
  65. Suchard M. A., Weiss R. E., Dorman K. S., Sinsheimer J. S.. ( 2003;). Inferring spatial phylogenetic variation along nucleotide sequences: a multiple change-point model. . J Am Stat Assoc 98:, 427–437. [CrossRef]
    [Google Scholar]
  66. Tamura K., Nei M.. ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10:, 512–526.[PubMed]
    [Google Scholar]
  67. Tamura K., Nei M., Kumar S.. ( 2004;). Prospects for inferring very large phylogenies by using the neighbor-joining method. . Proc Natl Acad Sci U S A 101:, 11030–11035. [CrossRef][PubMed]
    [Google Scholar]
  68. Tu Y.-B., Zhou T., Yuan X.-F., Qiu H.-J., Xue F., Sun C.-Q., Wang L., Wu D.-L., Peng J.-M.. & other authors ( 2007;). Long terminal repeats are not the sole determinants of virulence for equine infectious anemia virus. . Arch Virol 152:, 209–218. [CrossRef][PubMed]
    [Google Scholar]
  69. Valleé H., Carré H.. ( 1904;). Sur la nature infectieuse de l’anémie du cheval. . C R Acad Sci 139:, 331–333 (in French).
    [Google Scholar]
  70. Weber I. T., Tözsér J., Wu J., Friedman D., Oroszlan S.. ( 1993;). Molecular model of equine infectious anemia virus proteinase and kinetic measurements for peptide substrates with single amino acid substitutions. . Biochemistry 32:, 3354–3362. [CrossRef][PubMed]
    [Google Scholar]
  71. Wei L., Fan X., Lu X., Zhao L., Xiang W., Zhang X., Xue F., Shao Y., Shen R., Wang X.. ( 2009;). Genetic variation in the long terminal repeat associated with the transition of Chinese equine infectious anemia virus from virulence to avirulence. . Virus Genes 38:, 285–288. [CrossRef][PubMed]
    [Google Scholar]
  72. Williams D. L., Issel C. J., Steelman C. D., Adams W. V. Jr, Benton C. V.. ( 1981;). Studies with equine infectious anemia virus: transmission attempts by mosquitoes and survival of virus on vector mouthparts and hypodermic needles, and in mosquito tissue culture. . Am J Vet Res 42:, 1469–1473.[PubMed]
    [Google Scholar]
  73. Yoon S., Kingsman S. M., Kingsman A. J., Wilson S. A., Mitrophanous K. A.. ( 2000;). Characterization of the equine infectious anaemia virus S2 protein. . J Gen Virol 81:, 2189–2194.[PubMed]
    [Google Scholar]
  74. Zheng Y.-H., Nakaya T., Sentsui H., Kameoka M., Kishi M., Hagiwara K., Takahashi H., Kono Y., Ikuta K.. ( 1997;). Insertions, duplications and substitutions in restricted gp90 regions of equine infectious anaemia virus during febrile episodes in an experimentally infected horse. . J Gen Virol 78:, 807–820.[PubMed]
    [Google Scholar]
  75. Zheng Y.-H., Sentsui H., Kono Y., Ikuta K.. ( 2000;). Mutations occurring during serial passage of Japanese equine infectious anemia virus in primary horse macrophages. . Virus Res 68:, 93–98. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.047191-0
Loading
/content/journal/jgv/10.1099/vir.0.047191-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error