1887

Abstract

Oncolytic virus (OV) therapy is an emerging anti-cancer approach that utilizes viruses to preferentially infect and kill cancer cells, while not harming healthy cells. Vesicular stomatitis virus (VSV) is a prototypic non-segmented, negative-strand RNA virus with inherent OV qualities. Antiviral responses induced by type I interferon pathways are believed to be impaired in most cancer cells, making them more susceptible to VSV than normal cells. Several other factors make VSV a promising OV candidate for clinical use, including its well-studied biology, a small, easily manipulated genome, relative independence of a receptor or cell cycle, cytoplasmic replication without risk of host-cell transformation, and lack of pre-existing immunity in humans. Moreover, various VSV-based recombinant viruses have been engineered via reverse genetics to improve oncoselectivity, safety, oncotoxicity and stimulation of tumour-specific immunity. Alternative delivery methods are also being studied to minimize premature immune clearance of VSV. OV treatment as a monotherapy is being explored, although many studies have employed VSV in combination with radiotherapy, chemotherapy or other OVs. Preclinical studies with various cancers have demonstrated that VSV is a promising OV; as a result, a human clinical trial using VSV is currently in progress.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.046672-0
2012-12-01
2020-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/12/2529.html?itemId=/content/journal/jgv/10.1099/vir.0.046672-0&mimeType=html&fmt=ahah

References

  1. Alain T., Lun X., Martineau Y., Sean P., Pulendran B., Petroulakis E., Zemp F. J., Lemay C. G., Roy D. other authors 2010; Vesicular stomatitis virus oncolysis is potentiated by impairing mTORC1-dependent type I IFN production. Proc Natl Acad Sci U S A 107:1576–1581 [CrossRef][PubMed]
    [Google Scholar]
  2. Altomonte J., Braren R., Schulz S., Marozin S., Rummeny E. J., Schmid R. M., Ebert O. 2008a; Synergistic antitumor effects of transarterial viroembolization for multifocal hepatocellular carcinoma in rats. Hepatology 48:1864–1873 [CrossRef][PubMed]
    [Google Scholar]
  3. Altomonte J., Wu L., Chen L., Meseck M., Ebert O., García-Sastre A., Fallon J., Woo S. L. 2008b; Exponential enhancement of oncolytic vesicular stomatitis virus potency by vector-mediated suppression of inflammatory responses in vivo . Mol Ther 16:146–153 [CrossRef][PubMed]
    [Google Scholar]
  4. Altomonte J., Wu L., Meseck M., Chen L., Ebert O., Garcia-Sastre A., Fallon J., Mandeli J., Woo S. L. 2009; Enhanced oncolytic potency of vesicular stomatitis virus through vector-mediated inhibition of NK and NKT cells. Cancer Gene Ther 16:266–278[PubMed]
    [Google Scholar]
  5. Ausubel L. J., Meseck M., Derecho I., Lopez P., Knoblauch C., McMahon R., Anderson J., Dunphy N., Quezada V. other authors 2011; Current good manufacturing practice production of an oncolytic recombinant vesicular stomatitis viral vector for cancer treatment. Hum Gene Ther 22:489–497 [CrossRef][PubMed]
    [Google Scholar]
  6. Ayala-Breton C., Barber G. N., Russell S. J., Peng K. W. 2012; Retargeting vesicular stomatitis virus using measles virus envelope glycoproteins. Hum Gene Ther 23:484–491 [CrossRef][PubMed]
    [Google Scholar]
  7. Balachandran S., Barber G. N. 2004; Defective translational control facilitates vesicular stomatitis virus oncolysis. Cancer Cell 5:51–65 [CrossRef][PubMed]
    [Google Scholar]
  8. Balachandran S., Barber G. N. 2007; PKR in innate immunity, cancer, and viral oncolysis. Methods Mol Biol 383:277–301[PubMed]
    [Google Scholar]
  9. Ball L. A., Pringle C. R., Flanagan B., Perepelitsa V. P., Wertz G. W. 1999; Phenotypic consequences of rearranging the P, M, and G genes of vesicular stomatitis virus. J Virol 73:4705–4712[PubMed]
    [Google Scholar]
  10. Barber G. N. 2004; Vesicular stomatitis virus as an oncolytic vector. Viral Immunol 17:516–527 [CrossRef][PubMed]
    [Google Scholar]
  11. Barber G. N. 2005; VSV-tumor selective replication and protein translation. Oncogene 24:7710–7719 [CrossRef][PubMed]
    [Google Scholar]
  12. Bergman I., Griffin J. A., Gao Y., Whitaker-Dowling P. 2007; Treatment of implanted mammary tumors with recombinant vesicular stomatitis virus targeted to Her2/neu. Int J Cancer 121:425–430 [CrossRef][PubMed]
    [Google Scholar]
  13. Bi Z., Barna M., Komatsu T., Reiss C. S. 1995; Vesicular stomatitis virus infection of the central nervous system activates both innate and acquired immunity. J Virol 69:6466–6472[PubMed]
    [Google Scholar]
  14. Black B. L., Rhodes R. B., McKenzie M., Lyles D. S. 1993; The role of vesicular stomatitis virus matrix protein in inhibition of host-directed gene expression is genetically separable from its function in virus assembly. J Virol 67:4814–4821[PubMed]
    [Google Scholar]
  15. Boudreau J. E., Bridle B. W., Stephenson K. B., Jenkins K. M., Brunellière J., Bramson J. L., Lichty B. D., Wan Y. 2009; Recombinant vesicular stomatitis virus transduction of dendritic cells enhances their ability to prime innate and adaptive antitumor immunity. Mol Ther 17:1465–1472 [CrossRef][PubMed]
    [Google Scholar]
  16. Breitbach C. J., De Silva N. S., Falls T. J., Aladl U., Evgin L., Paterson J., Sun Y. Y., Roy D. G., Rintoul J. L. other authors 2011; Targeting tumor vasculature with an oncolytic virus. Mol Ther 19:886–894 [CrossRef][PubMed]
    [Google Scholar]
  17. Bridle B. W., Stephenson K. B., Boudreau J. E., Koshy S., Kazdhan N., Pullenayegum E., Brunellière J., Bramson J. L., Lichty B. D., Wan Y. 2010; Potentiating cancer immunotherapy using an oncolytic virus. Mol Ther 18:1430–1439 [CrossRef][PubMed]
    [Google Scholar]
  18. Brown C. W., Stephenson K. B., Hanson S., Kucharczyk M., Duncan R., Bell J. C., Lichty B. D. 2009; The p14 FAST protein of reptilian reovirus increases vesicular stomatitis virus neuropathogenesis. J Virol 83:552–561 [CrossRef][PubMed]
    [Google Scholar]
  19. Cary Z. D., Willingham M. C., Lyles D. S. 2011; Oncolytic vesicular stomatitis virus induces apoptosis in U87 glioblastoma cells by a type II death receptor mechanism and induces cell death and tumor clearance in vivo . J Virol 85:5708–5717 [CrossRef][PubMed]
    [Google Scholar]
  20. Chakraborty P., Seemann J., Mishra R. K., Wei J. H., Weil L., Nussenzveig D. R., Heiber J., Barber G. N., Dasso M., Fontoura B. M. 2009; Vesicular stomatitis virus inhibits mitotic progression and triggers cell death. EMBO Rep 10:1154–1160 [CrossRef][PubMed]
    [Google Scholar]
  21. Chang G., Xu S., Watanabe M., Jayakar H. R., Whitt M. A., Gingrich J. R. 2010; Enhanced oncolytic activity of vesicular stomatitis virus encoding SV5-F protein against prostate cancer. J Urol 183:1611–1618 [CrossRef][PubMed]
    [Google Scholar]
  22. Chauhan V. S., Furr S. R., Sterka D. G. Jr, Nelson D. A., Moerdyk-Schauwecker M., Marriott I., Grdzelishvili V. Z. 2010; Vesicular stomatitis virus infects resident cells of the central nervous system and induces replication-dependent inflammatory responses. Virology 400:187–196 [CrossRef][PubMed]
    [Google Scholar]
  23. Chelbi-Alix M. K., Quignon F., Pelicano L., Koken M. H., de Thé H. 1998; Resistance to virus infection conferred by the interferon-induced promyelocytic leukemia protein. J Virol 72:1043–1051[PubMed]
    [Google Scholar]
  24. Connor J. H., Lyles D. S. 2002; Vesicular stomatitis virus infection alters the eIF4F translation initiation complex and causes dephosphorylation of the eIF4E binding protein 4E-BP1. J Virol 76:10177–10187 [CrossRef][PubMed]
    [Google Scholar]
  25. Coulon P., Deutsch V., Lafay F., Martinet-Edelist C., Wyers F., Herman R. C., Flamand A. 1990; Genetic evidence for multiple functions of the matrix protein of vesicular stomatitis virus. J Gen Virol 71:991–996 [CrossRef][PubMed]
    [Google Scholar]
  26. Cripe T. P., Wang P. Y., Marcato P., Mahller Y. Y., Lee P. W. 2009; Targeting cancer-initiating cells with oncolytic viruses. Mol Ther 17:1677–1682 [CrossRef][PubMed]
    [Google Scholar]
  27. Cureton D. K., Massol R. H., Whelan S. P., Kirchhausen T. 2010; The length of vesicular stomatitis virus particles dictates a need for actin assembly during clathrin-dependent endocytosis. PLoS Pathog 6:e1001127 [CrossRef][PubMed]
    [Google Scholar]
  28. Dal Canto M. C., Rabinowitz S. G., Johnson T. C. 1976; Status spongiosus resulting from intracerebral infection of mice with temperature-sensitive mutants of vesicular stomatitis virus. Br J Exp Pathol 57:321–330[PubMed]
    [Google Scholar]
  29. Dalton K. P., Rose J. K. 2001; Vesicular stomatitis virus glycoprotein containing the entire green fluorescent protein on its cytoplasmic domain is incorporated efficiently into virus particles. Virology 279:414–421 [CrossRef][PubMed]
    [Google Scholar]
  30. Diallo J. S., Vähä-Koskela M., Le Boeuf F., Bell J. 2012; Propagation, purification, and in vivo testing of oncolytic vesicular stomatitis virus strains. Methods Mol Biol 797:127–140 [CrossRef][PubMed]
    [Google Scholar]
  31. Diaz R. M., Galivo F., Kottke T., Wongthida P., Qiao J., Thompson J., Valdes M., Barber G., Vile R. G. 2007; Oncolytic immunovirotherapy for melanoma using vesicular stomatitis virus. Cancer Res 67:2840–2848 [CrossRef][PubMed]
    [Google Scholar]
  32. Dinh P. X., Beura L. K., Panda D., Das A., Pattnaik A. K. 2011; Antagonistic effects of cellular poly(C) binding proteins on vesicular stomatitis virus gene expression. J Virol 85:9459–9471 [CrossRef][PubMed]
    [Google Scholar]
  33. Drolet B. S., Stuart M. A., Derner J. D. 2009; Infection of Melanoplus sanguinipes grasshoppers following ingestion of rangeland plant species harboring vesicular stomatitis virus. Appl Environ Microbiol 75:3029–3033 [CrossRef][PubMed]
    [Google Scholar]
  34. Ebert O., Shinozaki K., Kournioti C., Park M. S., García-Sastre A., Woo S. L. 2004; Syncytia induction enhances the oncolytic potential of vesicular stomatitis virus in virotherapy for cancer. Cancer Res 64:3265–3270 [CrossRef][PubMed]
    [Google Scholar]
  35. Edge R. E., Falls T. J., Brown C. W., Lichty B. D., Atkins H., Bell J. C. 2008; A let-7 microRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication. Mol Ther 16:1437–1443 [CrossRef][PubMed]
    [Google Scholar]
  36. Egan M. A., Chong S. Y., Rose N. F., Megati S., Lopez K. J., Schadeck E. B., Johnson J. E., Masood A., Piacente P. other authors 2004; Immunogenicity of attenuated vesicular stomatitis virus vectors expressing HIV type 1 Env and SIV Gag proteins: comparison of intranasal and intramuscular vaccination routes. AIDS Res Hum Retroviruses 20:989–1004 [CrossRef][PubMed]
    [Google Scholar]
  37. Faria P. A., Chakraborty P., Levay A., Barber G. N., Ezelle H. J., Enninga J., Arana C., van Deursen J., Fontoura B. M. 2005; VSV disrupts the Rae1/mrnp41 mRNA nuclear export pathway. Mol Cell 17:93–102 [CrossRef][PubMed]
    [Google Scholar]
  38. Fernandez M., Porosnicu M., Markovic D., Barber G. N. 2002; Genetically engineered vesicular stomatitis virus in gene therapy: application for treatment of malignant disease. J Virol 76:895–904 [CrossRef][PubMed]
    [Google Scholar]
  39. Finke S., Conzelmann K. K. 2005; Recombinant rhabdoviruses: vectors for vaccine development and gene therapy. Curr Top Microbiol Immunol 292:165–200 [CrossRef][PubMed]
    [Google Scholar]
  40. Flanagan E. B., Zamparo J. M., Ball L. A., Rodriguez L. L., Wertz G. W. 2001; Rearrangement of the genes of vesicular stomatitis virus eliminates clinical disease in the natural host: new strategy for vaccine development. J Virol 75:6107–6114 [CrossRef][PubMed]
    [Google Scholar]
  41. Frei K., Malipiero U. V., Leist T. P., Zinkernagel R. M., Schwab M. E., Fontana A. 1989; On the cellular source and function of interleukin 6 produced in the central nervous system in viral diseases. Eur J Immunol 19:689–694 [CrossRef][PubMed]
    [Google Scholar]
  42. Friedman G. K., Cassady K. A., Beierle E. A., Markert J. M., Gillespie G. Y. 2012; Targeting pediatric cancer stem cells with oncolytic virotherapy. Pediatr Res 71:500–510 [CrossRef][PubMed]
    [Google Scholar]
  43. Furr S. R., Chauhan V. S., Sterka D. Jr, Grdzelishvili V. Z., Marriott I. 2008; Characterization of retinoic acid-inducible gene-I expression in primary murine glia following exposure to vesicular stomatitis virus. J Neurovirol 14:503–513[PubMed] [CrossRef]
    [Google Scholar]
  44. Furr S. R., Moerdyk-Schauwecker M., Grdzelishvili V. Z., Marriott I. 2010; RIG-I mediates nonsegmented negative-sense RNA virus-induced inflammatory immune responses of primary human astrocytes. Glia 58:1620–1629[PubMed]
    [Google Scholar]
  45. Gaddy D. F., Lyles D. S. 2005; Vesicular stomatitis viruses expressing wild-type or mutant M proteins activate apoptosis through distinct pathways. J Virol 79:4170–4179 [CrossRef][PubMed]
    [Google Scholar]
  46. Gaddy D. F., Lyles D. S. 2007; Oncolytic vesicular stomatitis virus induces apoptosis via signaling through PKR, Fas, and Daxx. J Virol 81:2792–2804 [CrossRef][PubMed]
    [Google Scholar]
  47. Galivo F., Diaz R. M., Thanarajasingam U., Jevremovic D., Wongthida P., Thompson J., Kottke T., Barber G. N., Melcher A., Vile R. G. 2010; Interference of CD40L-mediated tumor immunotherapy by oncolytic vesicular stomatitis virus. Hum Gene Ther 21:439–450 [CrossRef][PubMed]
    [Google Scholar]
  48. Gao Y., Whitaker-Dowling P., Watkins S. C., Griffin J. A., Bergman I. 2006; Rapid adaptation of a recombinant vesicular stomatitis virus to a targeted cell line. J Virol 80:8603–8612 [CrossRef][PubMed]
    [Google Scholar]
  49. Garber K. 2006; China approves world’s first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst 98:298–300 [CrossRef][PubMed]
    [Google Scholar]
  50. Ge P., Tsao J., Schein S., Green T. J., Luo M., Zhou Z. H. 2010; Cryo-EM model of the bullet-shaped vesicular stomatitis virus. Science 327:689–693 [CrossRef][PubMed]
    [Google Scholar]
  51. Georgel P., Jiang Z., Kunz S., Janssen E., Mols J., Hoebe K., Bahram S., Oldstone M. B., Beutler B. 2007; Vesicular stomatitis virus glycoprotein G activates a specific antiviral Toll-like receptor 4-dependent pathway. Virology 362:304–313 [CrossRef][PubMed]
    [Google Scholar]
  52. Ghiringhelli F., Menard C., Puig P. E., Ladoire S., Roux S., Martin F., Solary E., Le Cesne A., Zitvogel L., Chauffert B. 2007; Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648 [CrossRef][PubMed]
    [Google Scholar]
  53. Goel A., Carlson S. K., Classic K. L., Greiner S., Naik S., Power A. T., Bell J. C., Russell S. J. 2007; Radioiodide imaging and radiovirotherapy of multiple myeloma using VSV(Δ51)-NIS, an attenuated vesicular stomatitis virus encoding the sodium iodide symporter gene. Blood 110:2342–2350 [CrossRef][PubMed]
    [Google Scholar]
  54. Hamacher R., Schmid R. M., Saur D., Schneider G. 2008; Apoptotic pathways in pancreatic ductal adenocarcinoma. Mol Cancer 7:64 [CrossRef][PubMed]
    [Google Scholar]
  55. Hammill A. M., Conner J., Cripe T. P. 2010; Oncolytic virotherapy reaches adolescence. Pediatr Blood Cancer 55:1253–1263 [CrossRef][PubMed]
    [Google Scholar]
  56. Hanahan D., Weinberg R. A. 2011; Hallmarks of cancer: the next generation. Cell 144:646–674 [CrossRef][PubMed]
    [Google Scholar]
  57. Hansen D. E., Thurmond M. C., Thorburn M. 1985; Factors associated with the spread of clinical vesicular stomatitis in California dairy cattle. Am J Vet Res 46:789–795[PubMed]
    [Google Scholar]
  58. Harashima A., Guettouche T., Barber G. N. 2010; Phosphorylation of the NFAR proteins by the dsRNA-dependent protein kinase PKR constitutes a novel mechanism of translational regulation and cellular defense. Genes Dev 24:2640–2653 [CrossRef][PubMed]
    [Google Scholar]
  59. Heiber J. F., Barber G. N. 2011; Vesicular stomatitis virus expressing tumor suppressor p53 is a highly attenuated, potent oncolytic agent. J Virol 85:10440–10450 [CrossRef][PubMed]
    [Google Scholar]
  60. Heinrich B. S., Cureton D. K., Rahmeh A. A., Whelan S. P. 2010; Protein expression redirects vesicular stomatitis virus RNA synthesis to cytoplasmic inclusions. PLoS Pathog 6:e1000958 [CrossRef][PubMed]
    [Google Scholar]
  61. Hoffmann M., Wu Y. J., Gerber M., Berger-Rentsch M., Heimrich B., Schwemmle M., Zimmer G. 2010; Fusion-active glycoprotein G mediates the cytotoxicity of vesicular stomatitis virus M mutants lacking host shut-off activity. J Gen Virol 91:2782–2793 [CrossRef][PubMed]
    [Google Scholar]
  62. Hornung V., Ellegast J., Kim S., Brzózka K., Jung A., Kato H., Poeck H., Akira S., Conzelmann K. K. other authors 2006; 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997 [CrossRef][PubMed]
    [Google Scholar]
  63. Huneycutt B. S., Bi Z., Aoki C. J., Reiss C. S. 1993; Central neuropathogenesis of vesicular stomatitis virus infection of immunodeficient mice. J Virol 67:6698–6706[PubMed]
    [Google Scholar]
  64. Ikeda K., Wakimoto H., Ichikawa T., Jhung S., Hochberg F. H., Louis D. N., Chiocca E. A. 2000; Complement depletion facilitates the infection of multiple brain tumors by an intravascular, replication-conditional herpes simplex virus mutant. J Virol 74:4765–4775 [CrossRef][PubMed]
    [Google Scholar]
  65. Irie T., Carnero E., Okumura A., García-Sastre A., Harty R. N. 2007; Modifications of the PSAP region of the matrix protein lead to attenuation of vesicular stomatitis virus in vitro and in vivo . J Gen Virol 88:2559–2567 [CrossRef][PubMed]
    [Google Scholar]
  66. Janelle V., Brassard F., Lapierre P., Lamarre A., Poliquin L. 2011; Mutations in the glycoprotein of vesicular stomatitis virus affect cytopathogenicity: potential for oncolytic virotherapy. J Virol 85:6513–6520 [CrossRef][PubMed]
    [Google Scholar]
  67. Jenks N., Myers R., Greiner S. M., Thompson J., Mader E. K., Greenslade A., Griesmann G. E., Federspiel M. J., Rakela J. other authors 2010; Safety studies on intrahepatic or intratumoral injection of oncolytic vesicular stomatitis virus expressing interferon-β in rodents and nonhuman primates. Hum Gene Ther 21:451–462 [CrossRef][PubMed]
    [Google Scholar]
  68. Jensen H., Andresen L., Nielsen J., Christensen J. P., Skov S. 2011; Vesicular stomatitis virus infection promotes immune evasion by preventing NKG2D-ligand surface expression. PLoS ONE 6:e23023 [CrossRef][PubMed]
    [Google Scholar]
  69. Johnson J. E., Nasar F., Coleman J. W., Price R. E., Javadian A., Draper K., Lee M., Reilly P. A., Clarke D. K. other authors 2007; Neurovirulence properties of recombinant vesicular stomatitis virus vectors in non-human primates. Virology 360:36–49 [CrossRef][PubMed]
    [Google Scholar]
  70. Kelly E., Russell S. J. 2007; History of oncolytic viruses: genesis to genetic engineering. Mol Ther 15:651–659[PubMed] [CrossRef]
    [Google Scholar]
  71. Kelly E. J., Nace R., Barber G. N., Russell S. J. 2010; Attenuation of vesicular stomatitis virus encephalitis through microRNA targeting. J Virol 84:1550–1562 [CrossRef][PubMed]
    [Google Scholar]
  72. Kopecky S. A., Willingham M. C., Lyles D. S. 2001; Matrix protein and another viral component contribute to induction of apoptosis in cells infected with vesicular stomatitis virus. J Virol 75:12169–12181 [CrossRef][PubMed]
    [Google Scholar]
  73. Kottke T., Diaz R. M., Kaluza K., Pulido J., Galivo F., Wongthida P., Thompson J., Willmon C., Barber G. N. other authors 2008a; Use of biological therapy to enhance both virotherapy and adoptive T-cell therapy for cancer. Mol Ther 16:1910–1918 [CrossRef][PubMed]
    [Google Scholar]
  74. Kottke T., Galivo F., Wongthida P., Diaz R. M., Thompson J., Jevremovic D., Barber G. N., Hall G., Chester J. other authors 2008b; Treg depletion-enhanced IL-2 treatment facilitates therapy of established tumors using systemically delivered oncolytic virus. Mol Ther 16:1217–1226 [CrossRef][PubMed]
    [Google Scholar]
  75. Kottke T., Hall G., Pulido J., Diaz R. M., Thompson J., Chong H., Selby P., Coffey M., Pandha H. other authors 2010; Antiangiogenic cancer therapy combined with oncolytic virotherapy leads to regression of established tumors in mice. J Clin Invest 120:1551–1560 [CrossRef][PubMed]
    [Google Scholar]
  76. Krishnamoorthy J., Mounir Z., Raven J. F., Koromilas A. E. 2008; The eIF2α kinases inhibit vesicular stomatitis virus replication independently of eIF2alpha phosphorylation. Cell Cycle 7:2346–2351[PubMed] [CrossRef]
    [Google Scholar]
  77. Labib M., Zamay A. S., Muharemagic D., Chechik A., Bell J. C., Berezovski M. V. 2012; Electrochemical sensing of aptamer-facilitated virus immunoshielding. Anal Chem 84:1677–1686 [CrossRef][PubMed]
    [Google Scholar]
  78. Lawson N. D., Stillman E. A., Whitt M. A., Rose J. K. 1995; Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci U S A 92:4477–4481 [CrossRef][PubMed]
    [Google Scholar]
  79. Le Boeuf F., Diallo J. S., McCart J. A., Thorne S., Falls T., Stanford M., Kanji F., Auer R., Brown C. W. other authors 2010; Synergistic interaction between oncolytic viruses augments tumor killing. Mol Ther 18:888–895 [CrossRef][PubMed]
    [Google Scholar]
  80. Le Boeuf F., Niknejad N., Wang J., Auer R., Weberpals J. I., Bell J. C., Dimitroulakos J. 2012; Sensitivity of cervical carcinoma cells to vesicular stomatitis virus-induced oncolysis: potential role of human papilloma virus infection. Int J Cancer 131:E204–E215 [CrossRef][PubMed]
    [Google Scholar]
  81. Leveille S., Goulet M. L., Lichty B. D., Hiscott J. 2011a; Vesicular stomatitis virus oncolytic treatment interferes with tumor-associated dendritic cell functions and abrogates tumor antigen presentation. J Virol 85:12160–12169 [CrossRef][PubMed]
    [Google Scholar]
  82. Leveille S., Samuel S., Goulet M. L., Hiscott J. 2011b; Enhancing VSV oncolytic activity with an improved cytosine deaminase suicide gene strategy. Cancer Gene Ther 18:435–443 [CrossRef][PubMed]
    [Google Scholar]
  83. Li Q., Tainsky M. A. 2011; Epigenetic silencing of IRF7 and/or IRF5 in lung cancer cells leads to increased sensitivity to oncolytic viruses. PLoS ONE 6:e28683 [CrossRef][PubMed]
    [Google Scholar]
  84. Lichty B. D., Power A. T., Stojdl D. F., Bell J. C. 2004; Vesicular stomatitis virus: re-inventing the bullet. Trends Mol Med 10:210–216 [CrossRef][PubMed]
    [Google Scholar]
  85. Linge C., Gewert D., Rossmann C., Bishop J. A., Crowe J. S. 1995; Interferon system defects in human malignant melanoma. Cancer Res 55:4099–4104[PubMed]
    [Google Scholar]
  86. Lyles D. S., Rupprecht C. E. 2007; Rhabdoviridae . In Fields Virology, 5th edn. pp. 1363–1408 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  87. Marozin S., Altomonte J., Stadler F., Thasler W. E., Schmid R. M., Ebert O. 2008; Inhibition of the IFN-β response in hepatocellular carcinoma by alternative spliced isoform of IFN regulatory factor-3. Mol Ther 16:1789–1797 [CrossRef][PubMed]
    [Google Scholar]
  88. Marozin S., De Toni E. N., Rizzani A., Altomonte J., Junger A., Schneider G., Thasler W. E., Kato N., Schmid R. M., Ebert O. 2010; Cell cycle progression or translation control is not essential for vesicular stomatitis virus oncolysis of hepatocellular carcinoma. PLoS ONE 5:e10988 [CrossRef][PubMed]
    [Google Scholar]
  89. Martinez I., Rodriguez L. L., Jimenez C., Pauszek S. J., Wertz G. W. 2003; Vesicular stomatitis virus glycoprotein is a determinant of pathogenesis in swine, a natural host. J Virol 77:8039–8047 [CrossRef][PubMed]
    [Google Scholar]
  90. Matin S. F., Rackley R. R., Sadhukhan P. C., Kim M. S., Novick A. C., Bandyopadhyay S. K. 2001; Impaired α-interferon signaling in transitional cell carcinoma: lack of p48 expression in 5637 cells. Cancer Res 61:2261–2266[PubMed]
    [Google Scholar]
  91. Melcher A., Parato K., Rooney C. M., Bell J. C. 2011; Thunder and lightning: immunotherapy and oncolytic viruses collide. Mol Ther 19:1008–1016 [CrossRef][PubMed]
    [Google Scholar]
  92. Miller J., Bidula S. M., Jensen T. M., Reiss C. S. 2009; Cytokine-modified VSV is attenuated for neural pathology, but is both highly immunogenic and oncolytic. Int J Infereron Cytokine Mediator Res 1:15–32[PubMed]
    [Google Scholar]
  93. Miller J. M., Bidula S. M., Jensen T. M., Reiss C. S. 2010; Vesicular stomatitis virus modified with single chain IL-23 exhibits oncolytic activity against tumor cells in vitro and in vivo . Int J Infereron Cytokine Mediator Res 2010:63–72[PubMed]
    [Google Scholar]
  94. Mire C. E., Whitt M. A. 2011; The protease-sensitive loop of the vesicular stomatitis virus matrix protein is involved in virus assembly and protein translation. Virology 416:16–25 [CrossRef][PubMed]
    [Google Scholar]
  95. Moerdyk-Schauwecker M., Destephanis D., Hastie E., Grdzelishvili V. Z. 2011; Detecting protein–protein interactions in vesicular stomatitis virus using a cytoplasmic yeast two hybrid system. J Virol Methods 173:203–212 [CrossRef][PubMed]
    [Google Scholar]
  96. Moussavi M., Fazli L., Tearle H., Guo Y., Cox M., Bell J., Ong C., Jia W., Rennie P. S. 2010; Oncolysis of prostate cancers induced by vesicular stomatitis virus in PTEN knockout mice. Cancer Res 70:1367–1376 [CrossRef][PubMed]
    [Google Scholar]
  97. Muik A., Kneiske I., Werbizki M., Wilflingseder D., Giroglou T., Ebert O., Kraft A., Dietrich U., Zimmer G. other authors 2011; Pseudotyping vesicular stomatitis virus with lymphocytic choriomeningitis virus glycoproteins enhances infectivity for glioma cells and minimizes neurotropism. J Virol 85:5679–5684 [CrossRef][PubMed]
    [Google Scholar]
  98. Muik A., Dold C., Geiß Y., Volk A., Werbizki M., Dietrich U., von Laer D. 2012; Semireplication-competent vesicular stomatitis virus as a novel platform for oncolytic virotherapy. J Mol Med (Berl) 90:959–970 [CrossRef][PubMed]
    [Google Scholar]
  99. Murphy A. M., Besmer D. M., Moerdyk-Schauwecker M., Moestl N., Ornelles D. A., Mukherjee P., Grdzelishvili V. Z. 2012; Vesicular stomatitis virus as an oncolytic agent against pancreatic ductal adenocarcinoma. J Virol 86:3073–3087 [CrossRef][PubMed]
    [Google Scholar]
  100. Naik S., Russell S. J. 2009; Engineering oncolytic viruses to exploit tumor specific defects in innate immune signaling pathways. Expert Opin Biol Ther 9:1163–1176 [CrossRef][PubMed]
    [Google Scholar]
  101. Naik S., Nace R., Federspiel M. J., Barber G. N., Peng K. W., Russell S. J. 2012; Curative one-shot systemic virotherapy in murine myeloma. Leukemia 26:1870–1878 [CrossRef][PubMed]
    [Google Scholar]
  102. Nakashima H., Kaur B., Chiocca E. A. 2010; Directing systemic oncolytic viral delivery to tumors via carrier cells. Cytokine Growth Factor Rev 21:119–126 [CrossRef][PubMed]
    [Google Scholar]
  103. Nguyên T. L., Abdelbary H., Arguello M., Breitbach C., Leveille S., Diallo J. S., Yasmeen A., Bismar T. A., Kirn D. other authors 2008; Chemical targeting of the innate antiviral response by histone deacetylase inhibitors renders refractory cancers sensitive to viral oncolysis. Proc Natl Acad Sci U S A 105:14981–14986 [CrossRef][PubMed]
    [Google Scholar]
  104. Noser J. A., Mael A. A., Sakuma R., Ohmine S., Marcato P., Lee P. W., Ikeda Y. 2007; The RAS/Raf1/MEK/ERK signaling pathway facilitates VSV-mediated oncolysis: implication for the defective interferon response in cancer cells. Mol Ther 15:1531–1536 [CrossRef][PubMed]
    [Google Scholar]
  105. Obuchi M., Fernandez M., Barber G. N. 2003; Development of recombinant vesicular stomatitis viruses that exploit defects in host defense to augment specific oncolytic activity. J Virol 77:8843–8856 [CrossRef][PubMed]
    [Google Scholar]
  106. Oliere S., Arguello M., Mesplede T., Tumilasci V., Nakhaei P., Stojdl D., Sonenberg N., Bell J., Hiscott J. 2008; Vesicular stomatitis virus oncolysis of T lymphocytes requires cell cycle entry and translation initiation. J Virol 82:5735–5749 [CrossRef][PubMed]
    [Google Scholar]
  107. Ozduman K., Wollmann G., Ahmadi S. A., van den Pol A. N. 2009; Peripheral immunization blocks lethal actions of vesicular stomatitis virus within the brain. J Virol 83:11540–11549 [CrossRef][PubMed]
    [Google Scholar]
  108. Pearson A. S., Koch P. E., Atkinson N., Xiong M., Finberg R. W., Roth J. A., Fang B. 1999; Factors limiting adenovirus-mediated gene transfer into human lung and pancreatic cancer cell lines. Clin Cancer Res 5:4208–4213[PubMed]
    [Google Scholar]
  109. Peng K. W., Myers R., Greenslade A., Mader E., Greiner S., Federspiel M. J., Dispenzieri A., Russell S. J. 2012; Using clinically approved cyclophosphamide regimens to control the humoral immune response to oncolytic viruses. Gene Ther (in press). doi:10.1038/gt.2012.31 [CrossRef][PubMed]
    [Google Scholar]
  110. Petersen J. M., Her L. S., Varvel V., Lund E., Dahlberg J. E. 2000; The matrix protein of vesicular stomatitis virus inhibits nucleocytoplasmic transport when it is in the nucleus and associated with nuclear pore complexes. Mol Cell Biol 20:8590–8601 [CrossRef][PubMed]
    [Google Scholar]
  111. Pfeffer L. M., Wang C., Constantinescu S. N., Croze E., Blatt L. M., Albino A. P., Nanus D. M. 1996; Human renal cancers resistant to IFN’s antiproliferative action exhibit sensitivity to IFN’s gene-inducing and antiviral actions. J Urol 156:1867–1871 [CrossRef][PubMed]
    [Google Scholar]
  112. Plakhov I. V., Arlund E. E., Aoki C., Reiss C. S. 1995; The earliest events in vesicular stomatitis virus infection of the murine olfactory neuroepithelium and entry of the central nervous system. Virology 209:257–262 [CrossRef][PubMed]
    [Google Scholar]
  113. Porosnicu M., Mian A., Barber G. N. 2003; The oncolytic effect of recombinant vesicular stomatitis virus is enhanced by expression of the fusion cytosine deaminase/uracil phosphoribosyltransferase suicide gene. Cancer Res 63:8366–8376[PubMed]
    [Google Scholar]
  114. Power A. T., Bell J. C. 2007; Cell-based delivery of oncolytic viruses: a new strategic alliance for a biological strike against cancer. Mol Ther 15:660–665[PubMed] [CrossRef]
    [Google Scholar]
  115. Power A. T., Bell J. C. 2008; Taming the Trojan horse: optimizing dynamic carrier cell/oncolytic virus systems for cancer biotherapy. Gene Ther 15:772–779 [CrossRef][PubMed]
    [Google Scholar]
  116. Pulido J., Kottke T., Thompson J., Galivo F., Wongthida P., Diaz R. M., Rommelfanger D., Ilett E., Pease L. other authors 2012; Using virally expressed melanoma cDNA libraries to identify tumor-associated antigens that cure melanoma. Nat Biotechnol 30:337–343 [CrossRef][PubMed]
    [Google Scholar]
  117. Qiao J., Wang H., Kottke T., Diaz R. M., Willmon C., Hudacek A., Thompson J., Parato K., Bell J. other authors 2008a; Loading of oncolytic vesicular stomatitis virus onto antigen-specific T cells enhances the efficacy of adoptive T-cell therapy of tumors. Gene Ther 15:604–616 [CrossRef][PubMed]
    [Google Scholar]
  118. Qiao J., Wang H., Kottke T., White C., Twigger K., Diaz R. M., Thompson J., Selby P., de Bono J. other authors 2008b; Cyclophosphamide facilitates antitumor efficacy against subcutaneous tumors following intravenous delivery of reovirus. Clin Cancer Res 14:259–269 [CrossRef][PubMed]
    [Google Scholar]
  119. Quiroz E., Moreno N., Peralta P. H., Tesh R. B. 1988; A human case of encephalitis associated with vesicular stomatitis virus (Indiana serotype) infection. Am J Trop Med Hyg 39:312–314[PubMed]
    [Google Scholar]
  120. Reiss C. S., Plakhov I. V., Komatsu T. 1998; Viral replication in olfactory receptor neurons and entry into the olfactory bulb and brain. Ann N Y Acad Sci 855:751–761 [CrossRef][PubMed]
    [Google Scholar]
  121. Rieder M., Conzelmann K. K. 2009; Rhabdovirus evasion of the interferon system. J Interferon Cytokine Res 29:499–510 [CrossRef][PubMed]
    [Google Scholar]
  122. Rose N. F., Marx P. A., Luckay A., Nixon D. F., Moretto W. J., Donahoe S. M., Montefiori D., Roberts A., Buonocore L., Rose J. K. 2001; An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants. Cell 106:539–549 [CrossRef][PubMed]
    [Google Scholar]
  123. Saloura V., Wang L. C., Fridlender Z. G., Sun J., Cheng G., Kapoor V., Sterman D. H., Harty R. N., Okumura A. other authors 2010; Evaluation of an attenuated vesicular stomatitis virus vector expressing interferon-beta for use in malignant pleural mesothelioma: heterogeneity in interferon responsiveness defines potential efficacy. Hum Gene Ther 21:51–64 [CrossRef][PubMed]
    [Google Scholar]
  124. Samuel S., Tumilasci V. F., Oliere S., Nguyên T. L., Shamy A., Bell J., Hiscott J. 2010; VSV oncolysis in combination with the BCL-2 inhibitor obatoclax overcomes apoptosis resistance in chronic lymphocytic leukemia. Mol Ther 18:2094–2103 [CrossRef][PubMed]
    [Google Scholar]
  125. Sarojini S., Theofanis T., Reiss C. S. 2011; Interferon-induced tetherin restricts vesicular stomatitis virus release in neurons. DNA Cell Biol 30:965–974 [CrossRef][PubMed]
    [Google Scholar]
  126. Schache P., Gürlevik E., Strüver N., Woller N., Malek N., Zender L., Manns M., Wirth T., Kühnel F., Kubicka S. 2009; VSV virotherapy improves chemotherapy by triggering apoptosis due to proteasomal degradation of Mcl-1. Gene Ther 16:849–861 [CrossRef][PubMed]
    [Google Scholar]
  127. Schellekens H., Smiers-de Vreede E., de Reus A., Dijkema R. 1984; Antiviral activity of interferon in rats and the effect of immune suppression. J Gen Virol 65:391–396 [CrossRef][PubMed]
    [Google Scholar]
  128. Schnell M. J., Buonocore L., Kretzschmar E., Johnson E., Rose J. K. 1996; Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proc Natl Acad Sci U S A 93:11359–11365 [CrossRef][PubMed]
    [Google Scholar]
  129. Sharif-Askari E., Nakhaei P., Oliere S., Tumilasci V., Hernandez E., Wilkinson P., Lin R., Bell J., Hiscott J. 2007; Bax-dependent mitochondrial membrane permeabilization enhances IRF3-mediated innate immune response during VSV infection. Virology 365:20–33 [CrossRef][PubMed]
    [Google Scholar]
  130. Shi Z., Cai Z., Sanchez A., Zhang T., Wen S., Wang J., Yang J., Fu S., Zhang D. 2011; A novel Toll-like receptor that recognizes vesicular stomatitis virus. J Biol Chem 286:4517–4524 [CrossRef][PubMed]
    [Google Scholar]
  131. Shin E. J., Wanna G. B., Choi B., Aguila D. III, Ebert O., Genden E. M., Woo S. L. 2007a; Interleukin-12 expression enhances vesicular stomatitis virus oncolytic therapy in murine squamous cell carcinoma. Laryngoscope 117:210–214 [CrossRef][PubMed]
    [Google Scholar]
  132. Shin E. J., Chang J. I., Choi B., Wanna G., Ebert O., Genden E. M., Woo S. L. 2007b; Fusogenic vesicular stomatitis virus for the treatment of head and neck squamous carcinomas. Otolaryngol Head Neck Surg 136:811–817 [CrossRef][PubMed]
    [Google Scholar]
  133. Shinozaki K., Ebert O., Suriawinata A., Thung S. N., Woo S. L. 2005; Prophylactic alpha interferon treatment increases the therapeutic index of oncolytic vesicular stomatitis virus virotherapy for advanced hepatocellular carcinoma in immune-competent rats. J Virol 79:13705–13713 [CrossRef][PubMed]
    [Google Scholar]
  134. Staeheli P., Pavlovic J. 1991; Inhibition of vesicular stomatitis virus mRNA synthesis by human MxA protein. J Virol 65:4498–4501[PubMed]
    [Google Scholar]
  135. Stanifer M. L., Cureton D. K., Whelan S. P. 2011; A recombinant vesicular stomatitis virus bearing a lethal mutation in the glycoprotein gene uncovers a second site suppressor that restores fusion. J Virol 85:8105–8115 [CrossRef][PubMed]
    [Google Scholar]
  136. Stephenson K. B., Barra N. G., Davies E., Ashkar A. A., Lichty B. D. 2012; Expressing human interleukin-15 from oncolytic vesicular stomatitis virus improves survival in a murine metastatic colon adenocarcinoma model through the enhancement of anti-tumor immunity. Cancer Gene Ther 19:238–246 [CrossRef][PubMed]
    [Google Scholar]
  137. Stojdl D. F., Lichty B., Knowles S., Marius R., Atkins H., Sonenberg N., Bell J. C. 2000; Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 6:821–825 [CrossRef][PubMed]
    [Google Scholar]
  138. Stojdl D. F., Lichty B. D., tenOever B. R., Paterson J. M., Power A. T., Knowles S., Marius R., Reynard J., Poliquin L. other authors 2003; VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4:263–275 [CrossRef][PubMed]
    [Google Scholar]
  139. Sun W. H., Pabon C., Alsayed Y., Huang P. P., Jandeska S., Uddin S., Platanias L. C., Rosen S. T. 1998; Interferon-α resistance in a cutaneous T-cell lymphoma cell line is associated with lack of STAT1 expression. Blood 91:570–576[PubMed]
    [Google Scholar]
  140. Tumilasci V. F., Olière S., Nguyên T. L., Shamy A., Bell J., Hiscott J. 2008; Targeting the apoptotic pathway with BCL-2 inhibitors sensitizes primary chronic lymphocytic leukemia cells to vesicular stomatitis virus-induced oncolysis. J Virol 82:8487–8499 [CrossRef][PubMed]
    [Google Scholar]
  141. van den Pol A. N., Dalton K. P., Rose J. K. 2002; Relative neurotropism of a recombinant rhabdovirus expressing a green fluorescent envelope glycoprotein. J Virol 76:1309–1327 [CrossRef][PubMed]
    [Google Scholar]
  142. Wang B. X., Rahbar R., Fish E. N. 2011; Interferon: current status and future prospects in cancer therapy. J Interferon Cytokine Res 31:545–552 [CrossRef][PubMed]
    [Google Scholar]
  143. Weidner J. M., Jiang D., Pan X. B., Chang J., Block T. M., Guo J. T. 2010; Interferon-induced cell membrane proteins, IFITM3 and tetherin, inhibit vesicular stomatitis virus infection via distinct mechanisms. J Virol 84:12646–12657 [CrossRef][PubMed]
    [Google Scholar]
  144. Whelan S. P., Ball L. A., Barr J. N., Wertz G. T. 1995; Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proc Natl Acad Sci U S A 92:8388–8392 [CrossRef][PubMed]
    [Google Scholar]
  145. Whitlow Z. W., Connor J. H., Lyles D. S. 2006; Preferential translation of vesicular stomatitis virus mRNAs is conferred by transcription from the viral genome. J Virol 80:11733–11742 [CrossRef][PubMed]
    [Google Scholar]
  146. Whitlow Z. W., Connor J. H., Lyles D. S. 2008; New mRNAs are preferentially translated during vesicular stomatitis virus infection. J Virol 82:2286–2294 [CrossRef][PubMed]
    [Google Scholar]
  147. Willmon C., Diaz R. M., Wongthida P., Galivo F., Kottke T., Thompson J., Albelda S., Harrington K., Melcher A., Vile R. 2011; Vesicular stomatitis virus-induced immune suppressor cells generate antagonism between intratumoral oncolytic virus and cyclophosphamide. Mol Ther 19:140–149 [CrossRef][PubMed]
    [Google Scholar]
  148. Wollmann G., Tattersall P., van den Pol A. N. 2005; Targeting human glioblastoma cells: comparison of nine viruses with oncolytic potential. J Virol 79:6005–6022 [CrossRef][PubMed]
    [Google Scholar]
  149. Wollmann G., Rogulin V., Simon I., Rose J. K., van den Pol A. N. 2010; Some attenuated variants of vesicular stomatitis virus show enhanced oncolytic activity against human glioblastoma cells relative to normal brain cells. J Virol 84:1563–1573 [CrossRef][PubMed]
    [Google Scholar]
  150. Wong L. H., Krauer K. G., Hatzinisiriou I., Estcourt M. J., Hersey P., Tam N. D., Edmondson S., Devenish R. J., Ralph S. J. 1997; Interferon-resistant human melanoma cells are deficient in ISGF3 components, STAT1, STAT2, and p48-ISGF3γ. J Biol Chem 272:28779–28785 [CrossRef][PubMed]
    [Google Scholar]
  151. Wongthida P., Diaz R. M., Galivo F., Kottke T., Thompson J., Pulido J., Pavelko K., Pease L., Melcher A., Vile R. 2010; Type III IFN interleukin-28 mediates the antitumor efficacy of oncolytic virus VSV in immune-competent mouse models of cancer. Cancer Res 70:4539–4549 [CrossRef][PubMed]
    [Google Scholar]
  152. Wongthida P., Diaz R. M., Galivo F., Kottke T., Thompson J., Melcher A., Vile R. 2011a; VSV oncolytic virotherapy in the B16 model depends upon intact MyD88 signaling. Mol Ther 19:150–158 [CrossRef][PubMed]
    [Google Scholar]
  153. Wongthida P., Diaz R. M., Pulido C., Rommelfanger D., Galivo F., Kaluza K., Kottke T., Thompson J., Melcher A., Vile R. 2011b; Activating systemic T-cell immunity against self tumor antigens to support oncolytic virotherapy with vesicular stomatitis virus. Hum Gene Ther 22:1343–1353 [CrossRef][PubMed]
    [Google Scholar]
  154. Wu L., Huang T. G., Meseck M., Altomonte J., Ebert O., Shinozaki K., García-Sastre A., Fallon J., Mandeli J., Woo S. L. 2008; rVSV(MΔ51)-M3 is an effective and safe oncolytic virus for cancer therapy. Hum Gene Ther 19:635–647 [CrossRef][PubMed]
    [Google Scholar]
  155. Yuan H., Puckett S., Lyles D. S. 2001; Inhibition of host transcription by vesicular stomatitis virus involves a novel mechanism that is independent of phosphorylation of TATA-binding protein (TBP) or association of TBP with TBP-associated factor subunits. J Virol 75:4453–4458 [CrossRef][PubMed]
    [Google Scholar]
  156. Zhang K. X., Matsui Y., Hadaschik B. A., Lee C., Jia W., Bell J. C., Fazli L., So A. I., Rennie P. S. 2010; Down-regulation of type I interferon receptor sensitizes bladder cancer cells to vesicular stomatitis virus-induced cell death. Int J Cancer 127:830–838[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.046672-0
Loading
/content/journal/jgv/10.1099/vir.0.046672-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error