1887

Abstract

The human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) pandemic is amongst the most important current worldwide public health threats. While much research has been focused on AIDS vaccines that target the surface viral envelope (Env) protein, including gp120 and the gp41 ectodomain, the C-terminal tail (CTT) of gp41 has received relatively little attention. Despite early studies highlighting the immunogenicity of a particular CTT sequence, the CTT has been classically portrayed as a type I membrane protein limited to functioning in Env trafficking and virion incorporation. Recent studies demonstrate, however, that the Env CTT has other important functions. The CTT has been shown to additionally modulate Env ectodomain structure on the cell and virion surface, affect Env reactivity and viral sensitivity to conformation-dependent neutralizing antibodies, and alter cell–cell and virus–cell fusogenicity of Env. This review provides an overview of the Env structure and function with a particular emphasis on the CTT and recent studies that highlight its functionally rich nature.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.046508-0
2013-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/1/1.html?itemId=/content/journal/jgv/10.1099/vir.0.046508-0&mimeType=html&fmt=ahah

References

  1. Abacioglu Y. H., Fouts T. R., Laman J. D., Claassen E., Pincus S. H., Moore J. P., Roby C. A., Kamin-Lewis R., Lewis G. K. 1994; Epitope mapping and topology of baculovirus-expressed HIV-1 gp160 determined with a panel of murine monoclonal antibodies. AIDS Res Hum Retroviruses 10:371–381 [View Article][PubMed]
    [Google Scholar]
  2. Allan J. S., Coligan J. E., Barin F., McLane M. F., Sodroski J. G., Rosen C. A., Haseltine W. A., Lee T. H., Essex M. 1985; Major glycoprotein antigens that induce antibodies in AIDS patients are encoded by HTLV-III. Science 228:1091–1094 [View Article][PubMed]
    [Google Scholar]
  3. Barré-Sinoussi F., Chermann J. C., Rey F., Nugeyre M. T., Chamaret S., Gruest J., Dauguet C., Axler-Blin C., Vézinet-Brun F. other authors 1983; Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–871 [View Article][PubMed]
    [Google Scholar]
  4. Beaumont T., Broersen S., van Nuenen A., Huisman H. G., de Roda Husman A. M., Heeney J. L., Schuitemaker H. 2000; Increased neutralization sensitivity and reduced replicative capacity of human immunodeficiency virus type 1 after short-term in vivo or in vitro passage through chimpanzees. J Virol 74:7699–7707 [View Article][PubMed]
    [Google Scholar]
  5. Bhakta S. J., Shang L., Prince J. L., Claiborne D. T., Hunter E. 2011; Mutagenesis of tyrosine and di-leucine motifs in the HIV-1 envelope cytoplasmic domain results in a loss of Env-mediated fusion and infectivity. Retrovirology 8:37 [View Article][PubMed]
    [Google Scholar]
  6. Bhattacharya J., Peters P. J., Clapham P. R. 2004; Human immunodeficiency virus type 1 envelope glycoproteins that lack cytoplasmic domain cysteines: impact on association with membrane lipid rafts and incorporation onto budding virus particles. J Virol 78:5500–5506 [View Article][PubMed]
    [Google Scholar]
  7. Bhattacharya J., Repik A., Clapham P. R. 2006; Gag regulates association of human immunodeficiency virus type 1 envelope with detergent-resistant membranes. J Virol 80:5292–5300 [View Article][PubMed]
    [Google Scholar]
  8. Blot G., Janvier K., Le Panse S., Benarous R., Berlioz-Torrent C. 2003; Targeting of the human immunodeficiency virus type 1 envelope to the trans-Golgi network through binding to TIP47 is required for env incorporation into virions and infectivity. J Virol 77:6931–6945 [View Article][PubMed]
    [Google Scholar]
  9. Blot G., Lopez-Vergès S., Treand C., Kubat N. J., Delcroix-Genête D., Emiliani S., Benarous R., Berlioz-Torrent C. 2006; Luman, a new partner of HIV-1 TMgp41, interferes with Tat-mediated transcription of the HIV-1 LTR. J Mol Biol 364:1034–1047 [View Article][PubMed]
    [Google Scholar]
  10. Boge M., Wyss S., Bonifacino J. S., Thali M. 1998; A membrane-proximal tyrosine-based signal mediates internalization of the HIV-1 envelope glycoprotein via interaction with the AP-2 clathrin adaptor. J Biol Chem 273:15773–15778 [View Article][PubMed]
    [Google Scholar]
  11. Booth P. J., Templer R. H., Meijberg W., Allen S. J., Curran A. R., Lorch M. 2001; In vitro studies of membrane protein folding. Crit Rev Biochem Mol Biol 36:501–603 [View Article][PubMed]
    [Google Scholar]
  12. Bosch M. L., Earl P. L., Fargnoli K., Picciafuoco S., Giombini F., Wong-Staal F., Franchini G. 1989; Identification of the fusion peptide of primate immunodeficiency viruses. Science 244:694–697 [View Article][PubMed]
    [Google Scholar]
  13. Buratti E., Tisminetzky S. G., Scodeller E. S., Baralle F. E. 1996; Conformational display of two neutralizing epitopes of HIV-1 gp41 on the Flock House virus capsid protein. J Immunol Methods 197:7–18 [View Article][PubMed]
    [Google Scholar]
  14. Buratti E., Tisminetzky S. G., D’Agaro P., Baralle F. E. 1997; A neutralizing monoclonal antibody previously mapped exclusively on human immunodeficiency virus type 1 gp41 recognizes an epitope in p17 sharing the core sequence IEEE. J Virol 71:2457–2462[PubMed]
    [Google Scholar]
  15. Buratti E., McLain L., Tisminetzky S., Cleveland S. M., Dimmock N. J., Baralle F. E. 1998; The neutralizing antibody response against a conserved region of human immunodeficiency virus type 1 gp41 (amino acid residues 731–752) is uniquely directed against a conformational epitope. J Gen Virol 79:2709–2716[PubMed]
    [Google Scholar]
  16. Byland R., Vance P. J., Hoxie J. A., Marsh M. 2007; A conserved dileucine motif mediates clathrin and AP-2-dependent endocytosis of the HIV-1 envelope protein. Mol Biol Cell 18:414–425 [View Article][PubMed]
    [Google Scholar]
  17. Caffrey M., Cai M., Kaufman J., Stahl S. J., Wingfield P. T., Covell D. G., Gronenborn A. M., Clore G. M. 1998; Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41. EMBO J 17:4572–4584 [View Article][PubMed]
    [Google Scholar]
  18. Cantor R. S. 1997a; The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Biochemistry 36:2339–2344 [View Article][PubMed]
    [Google Scholar]
  19. Cantor R. S. 1997b; Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem B 101:1723–1725 [View Article]
    [Google Scholar]
  20. Cantor R. S. 1999; The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. Chem Phys Lipids 101:45–56 [View Article][PubMed]
    [Google Scholar]
  21. Cantor R. S. 2002; Size distribution of barrel-stave aggregates of membrane peptides: influence of the bilayer lateral pressure profile. Biophys J 82:2520–2525 [View Article][PubMed]
    [Google Scholar]
  22. Chakrabarti L., Emerman M., Tiollais P., Sonigo P. 1989; The cytoplasmic domain of simian immunodeficiency virus transmembrane protein modulates infectivity. J Virol 63:4395–4403[PubMed]
    [Google Scholar]
  23. Chan D. C., Fass D., Berger J. M., Kim P. S. 1997; Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273 [View Article][PubMed]
    [Google Scholar]
  24. Chan W.-E., Lin H.-H., Chen S. S.-L. 2005; Wild-type-like viral replication potential of human immunodeficiency virus type 1 envelope mutants lacking palmitoylation signals. J Virol 79:8374–8387 [View Article][PubMed]
    [Google Scholar]
  25. Chanh T. C., Dreesman G. R., Kanda P., Linette G. P., Sparrow J. T., Ho D. D., Kennedy R. C. 1986; Induction of anti-HIV neutralizing antibodies by synthetic peptides. EMBO J 5:3065–3071[PubMed]
    [Google Scholar]
  26. Checkley M. A., Luttge B. G., Freed E. O. 2011; HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol 410:582–608 [View Article][PubMed]
    [Google Scholar]
  27. Chernomordik L., Chanturiya A. N., Suss-Toby E., Nora E., Zimmerberg J. 1994; An amphipathic peptide from the C-terminal region of the human immunodeficiency virus envelope glycoprotein causes pore formation in membranes. J Virol 68:7115–7123[PubMed]
    [Google Scholar]
  28. Cheung L., McLain L., Hollier M. J., Reading S. A., Dimmock N. J. 2005; Part of the C-terminal tail of the envelope gp41 transmembrane glycoprotein of human immunodeficiency virus type 1 is exposed on the surface of infected cells and is involved in virus-mediated cell fusion. J Gen Virol 86:131–138 [View Article][PubMed]
    [Google Scholar]
  29. Chomont N., Hocini H., Gody J. C., Bouhlal H., Becquart P., Krief-Bouillet C., Kazatchkine M., Bélec L. 2008; Neutralizing monoclonal antibodies to human immunodeficiency virus type 1 do not inhibit viral transcytosis through mucosal epithelial cells. Virology 370:246–254 [View Article][PubMed]
    [Google Scholar]
  30. Cleveland S. M., Buratti E., Jones T. D., North P., Baralle F., McLain L., McInerney T., Durrani Z., Dimmock N. J. 2000a; Immunogenic and antigenic dominance of a nonneutralizing epitope over a highly conserved neutralizing epitope in the gp41 envelope glycoprotein of human immunodeficiency virus type 1: its deletion leads to a strong neutralizing response. Virology 266:66–78 [View Article][PubMed]
    [Google Scholar]
  31. Cleveland S. M., Jones T. D., Dimmock N. J. 2000b; Properties of a neutralizing antibody that recognizes a conformational form of epitope ERDRD in the gp41 C-terminal tail of human immunodeficiency virus type 1. J Gen Virol 81:1251–1260[PubMed]
    [Google Scholar]
  32. Cleveland S. M., McLain L., Cheung L., Jones T. D., Hollier M., Dimmock N. J. 2003; A region of the C-terminal tail of the gp41 envelope glycoprotein of human immunodeficiency virus type 1 contains a neutralizing epitope: evidence for its exposure on the surface of the virion. J Gen Virol 84:591–602 [View Article][PubMed]
    [Google Scholar]
  33. Cosson P. 1996; Direct interaction between the envelope and matrix proteins of HIV-1. EMBO J 15:5783–5788[PubMed]
    [Google Scholar]
  34. Deschambeault J., Lalonde J. P., Cervantes-Acosta G., Lodge R., Cohen E. A., Lemay G. 1999; Polarized human immunodeficiency virus budding in lymphocytes involves a tyrosine-based signal and favors cell-to-cell viral transmission. J Virol 73:5010–5017[PubMed]
    [Google Scholar]
  35. Dimmock N. J. 2005; The complex antigenicity of a small external region of the C-terminal tail of the HIV-1 gp41 envelope protein: a lesson in epitope analysis. Rev Med Virol 15:365–381 [View Article][PubMed]
    [Google Scholar]
  36. Dragic T., Trkola A., Thompson D. A., Cormier E. G., Kajumo F. A., Maxwell E., Lin S. W., Ying W., Smith S. O. other authors 2000; A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc Natl Acad Sci U S A 97:5639–5644 [View Article][PubMed]
    [Google Scholar]
  37. Dubay J. W., Roberts S. J., Brody B., Hunter E. 1992; Mutations in the leucine zipper of the human immunodeficiency virus type 1 transmembrane glycoprotein affect fusion and infectivity. J Virol 66:4748–4756[PubMed]
    [Google Scholar]
  38. Earl P. L., Doms R. W., Moss B. 1990; Oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein. Proc Natl Acad Sci U S A 87:648–652 [View Article][PubMed]
    [Google Scholar]
  39. Earl P. L., Koenig S., Moss B. 1991; Biological and immunological properties of human immunodeficiency virus type 1 envelope glycoprotein: analysis of proteins with truncations and deletions expressed by recombinant vaccinia viruses. J Virol 65:31–41[PubMed]
    [Google Scholar]
  40. Edinger A. L., Mankowski J. L., Doranz B. J., Margulies B. J., Lee B., Rucker J., Sharron M., Hoffman T. L., Berson J. F. other authors 1997; CD4-independent, CCR5-dependent infection of brain capillary endothelial cells by a neurovirulent simian immunodeficiency virus strain. Proc Natl Acad Sci U S A 94:14742–14747 [View Article][PubMed]
    [Google Scholar]
  41. Edwards T. G., Hoffman T. L., Baribaud F., Wyss S., LaBranche C. C., Romano J., Adkinson J., Sharron M., Hoxie J. A., Doms R. W. 2001; Relationships between CD4 independence, neutralization sensitivity, and exposure of a CD4-induced epitope in a human immunodeficiency virus type 1 envelope protein. J Virol 75:5230–5239 [View Article][PubMed]
    [Google Scholar]
  42. Edwards T. G., Wyss S., Reeves J. D., Zolla-Pazner S., Hoxie J. A., Doms R. W., Baribaud F. 2002; Truncation of the cytoplasmic domain induces exposure of conserved regions in the ectodomain of human immunodeficiency virus type 1 envelope protein. J Virol 76:2683–2691 [View Article][PubMed]
    [Google Scholar]
  43. Eisenberg D., Wesson M. 1990; The most highly amphiphilic α-helices include two amino acid segments in human immunodeficiency virus glycoprotein 41. Biopolymers 29:171–177 [View Article][PubMed]
    [Google Scholar]
  44. Eisenberg D., Weiss R. M., Terwilliger T. C. 1984; The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci U S A 81:140–144 [View Article][PubMed]
    [Google Scholar]
  45. Evans D. J., McKeating J., Meredith J. M., Burke K. L., Katrak K., John A., Ferguson M., Minor P. D., Weiss R. A., Almond J. W. 1989; An engineered poliovirus chimaera elicits broadly reactive HIV-1 neutralizing antibodies. Nature 339:385–388, 340 [View Article][PubMed]
    [Google Scholar]
  46. Freed E. O., Martin M. A. 1995; Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific, single amino acid substitutions in the human immunodeficiency virus type 1 matrix. J Virol 69:1984–1989[PubMed]
    [Google Scholar]
  47. Freed E. O., Martin M. A. 1996; Domains of the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions. J Virol 70:341–351[PubMed]
    [Google Scholar]
  48. Freed E. O., Myers D. J., Risser R. 1989; Mutational analysis of the cleavage sequence of the human immunodeficiency virus type 1 envelope glycoprotein precursor gp160. J Virol 63:4670–4675[PubMed]
    [Google Scholar]
  49. Freed E. O., Myers D. J., Risser R. 1990; Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Proc Natl Acad Sci U S A 87:4650–4654 [View Article][PubMed]
    [Google Scholar]
  50. Freed E. O., Delwart E. L., Buchschacher G. L. Jr, Panganiban A. T. 1992; A mutation in the human immunodeficiency virus type 1 transmembrane glycoprotein gp41 dominantly interferes with fusion and infectivity. Proc Natl Acad Sci U S A 89:70–74 [View Article][PubMed]
    [Google Scholar]
  51. Fujii G., Horvath S., Woodward S., Eiserling F., Eisenberg D. 1992; A molecular model for membrane fusion based on solution studies of an amphiphilic peptide from HIV gp41. Protein Sci 1:1454–1464 [View Article][PubMed]
    [Google Scholar]
  52. Futaki S. 2005; Membrane-permeable arginine-rich peptides and the translocation mechanisms. Adv Drug Deliv Rev 57:547–558 [View Article][PubMed]
    [Google Scholar]
  53. Gallaher W. R., Ball J. M., Garry R. F., Griffin M. C., Montelaro R. C. 1989; A general model for the transmembrane proteins of HIV and other retroviruses. AIDS Res Hum Retroviruses 5:431–440 [View Article][PubMed]
    [Google Scholar]
  54. Gallo R. C., Salahuddin S. Z., Popovic M., Shearer G. M., Kaplan M., Haynes B. F., Palker T. J., Redfield R., Oleske J. other authors 1984; Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 224:500–503 [View Article][PubMed]
    [Google Scholar]
  55. Gangupomu V. K., Abrams C. F. 2010; All-atom models of the membrane-spanning domain of HIV-1 gp41 from metadynamics. Biophys J 99:3438–3444 [View Article][PubMed]
    [Google Scholar]
  56. Greenwood A. I., Pan J., Mills T. T., Nagle J. F., Epand R. M., Tristram-Nagle S. 2008; CRAC motif peptide of the HIV-1 gp41 protein thins SOPC membranes and interacts with cholesterol. Biochim Biophys Acta 1778:1120–1130 [View Article][PubMed]
    [Google Scholar]
  57. Haffar O. K., Dowbenko D. J., Berman P. W. 1988; Topogenic analysis of the human immunodeficiency virus type 1 envelope glycoprotein, gp160, in microsomal membranes. J Cell Biol 107:1677–1687 [View Article][PubMed]
    [Google Scholar]
  58. Heap C. J., Reading S. A., Dimmock N. J. 2005; An antibody specific for the C-terminal tail of the gp41 transmembrane protein of human immunodeficiency virus type 1 mediates post-attachment neutralization, probably through inhibition of virus-cell fusion. J Gen Virol 86:1499–1507 [View Article][PubMed]
    [Google Scholar]
  59. Hessa T., Kim H., Bihlmaier K., Lundin C., Boekel J., Andersson H., Nilsson I., White S. H., von Heijne G. 2005a; Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433:377–381 [View Article][PubMed]
    [Google Scholar]
  60. Hessa T., White S. H., von Heijne G. 2005b; Membrane insertion of a potassium-channel voltage sensor. Science 307:1427 [View Article][PubMed]
    [Google Scholar]
  61. Hirsch V. M., Edmondson P., Murphey-Corb M., Arbeille B., Johnson P. R., Mullins J. I. 1989; SIV adaptation to human cells. Nature 341:573–574 [View Article][PubMed]
    [Google Scholar]
  62. Holl V., Peressin M., Decoville T., Schmidt S., Zolla-Pazner S., Aubertin A. M., Moog C. 2006; Nonneutralizing antibodies are able to inhibit human immunodeficiency virus type 1 replication in macrophages and immature dendritic cells. J Virol 80:6177–6181 [View Article][PubMed]
    [Google Scholar]
  63. Hollier M. J., Dimmock N. J. 2005; The C-terminal tail of the gp41 transmembrane envelope glycoprotein of HIV-1 clades A, B, C, and D may exist in two conformations: an analysis of sequence, structure, and function. Virology 337:284–296 [View Article][PubMed]
    [Google Scholar]
  64. Huang C. C., Tang M., Zhang M.-Y., Majeed S., Montabana E., Stanfield R. L., Dimitrov D. S., Korber B., Sodroski J. other authors 2005; Structure of a V3-containing HIV-1 gp120 core. Science 310:1025–1028 [View Article][PubMed]
    [Google Scholar]
  65. Inomata K., Ohno A., Tochio H., Isogai S., Tenno T., Nakase I., Takeuchi T., Futaki S., Ito Y. other authors 2009; High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 458:106–109 [View Article][PubMed]
    [Google Scholar]
  66. Jiang J, Aiken C. 2007; Maturation-dependent HIV-1 particle fusion requires a carboxyl-terminal region of the gp41 cytoplasmic tail. J Virol 81:9999–10008 [CrossRef]
    [Google Scholar]
  67. Jiang Y., Ruta V., Chen J., Lee A., MacKinnon R. 2003; The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423:42–48 [View Article][PubMed]
    [Google Scholar]
  68. Joyner A. S., Willis J. R., Crowe J. E. Jr, Aiken C. 2011; Maturation-induced cloaking of neutralization epitopes on HIV-1 particles. PLoS Pathog 7:e1002234 [View Article][PubMed]
    [Google Scholar]
  69. Kalia V., Sarkar S., Gupta P., Montelaro R. C. 2003; Rational site-directed mutations of the LLP-1 and LLP-2 lentivirus lytic peptide domains in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41 indicate common functions in cell-cell fusion but distinct roles in virion envelope incorporation. J Virol 77:3634–3646 [View Article][PubMed]
    [Google Scholar]
  70. Kalia V., Sarkar S., Gupta P., Montelaro R. C. 2005; Antibody neutralization escape mediated by point mutations in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41. J Virol 79:2097–2107 [View Article][PubMed]
    [Google Scholar]
  71. Kennedy R. C., Henkel R. D., Pauletti D., Allan J. S., Lee T. H., Essex M., Dreesman G. R. 1986; Antiserum to a synthetic peptide recognizes the HTLV-III envelope glycoprotein. Science 231:1556–1559 [View Article][PubMed]
    [Google Scholar]
  72. Kim J. H., Hartley T. L., Curran A. R., Engelman D. M. 2009; Molecular dynamics studies of the transmembrane domain of gp41 from HIV-1. Biochim Biophys Acta 1788:1804–1812 [View Article][PubMed]
    [Google Scholar]
  73. Kliger Y., Shai Y. 1997; A leucine zipper-like sequence from the cytoplasmic tail of the HIV-1 envelope glycoprotein binds and perturbs lipid bilayers. Biochemistry 36:5157–5169 [View Article][PubMed]
    [Google Scholar]
  74. Kodama T., Wooley D. P., Naidu Y. M., Kestler H. W. III, Daniel M. D., Li Y., Desrosiers R. C. 1989; Significance of premature stop codons in env of simian immunodeficiency virus. J Virol 63:4709–4714[PubMed]
    [Google Scholar]
  75. Kol N., Shi Y., Tsvitov M., Barlam D., Shneck R. Z., Kay M. S., Rousso I. 2007; A stiffness switch in human immunodeficiency virus. Biophys J 92:1777–1783 [View Article][PubMed]
    [Google Scholar]
  76. Kondo N., Miyauchi K., Meng F., Iwamoto A., Matsuda Z. 2010; Conformational changes of the HIV-1 envelope protein during membrane fusion are inhibited by the replacement of its membrane-spanning domain. J Biol Chem 285:14681–14688 [View Article][PubMed]
    [Google Scholar]
  77. Kotov A., Zhou J., Flicker P., Aiken C. 1999; Association of Nef with the human immunodeficiency virus type 1 core. J Virol 73:8824–8830[PubMed]
    [Google Scholar]
  78. Kwon Y. D., Finzi A., Wu X., Dogo-Isonagie C., Lee L. K., Moore L. R., Schmidt S. D., Stuckey J., Yang Y. other authors 2012; Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops. Proc Natl Acad Sci U S A 109:5663–5668 [View Article][PubMed]
    [Google Scholar]
  79. Kwong P. D., Wyatt R., Robinson J., Sweet R. W., Sodroski J., Hendrickson W. A. 1998; Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393:648–659 [View Article][PubMed]
    [Google Scholar]
  80. LaBranche C. C., Sauter M. M., Haggarty B. S., Vance P. J., Romano J., Hart T. K., Bugelski P. J., Hoxie J. A. 1994; Biological, molecular, and structural analysis of a cytopathic variant from a molecularly cloned simian immunodeficiency virus. J Virol 68:7665–7667[PubMed]
    [Google Scholar]
  81. Leonard C. K., Spellman M. W., Riddle L., Harris R. J., Thomas J. N., Gregory T. J. 1990; Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem 265:10373–10382[PubMed]
    [Google Scholar]
  82. Liu J., Bartesaghi A., Borgnia M. J., Sapiro G., Subramaniam S. 2008; Molecular architecture of native HIV-1 gp120 trimers. Nature 455:109–113 [View Article][PubMed]
    [Google Scholar]
  83. Lodge R., Göttlinger H., Gabuzda D., Cohen E. A., Lemay G. 1994; The intracytoplasmic domain of gp41 mediates polarized budding of human immunodeficiency virus type 1 in MDCK cells. J Virol 68:4857–4861[PubMed]
    [Google Scholar]
  84. Lodge R., Lalonde J. P., Lemay G., Cohen E. A. 1997; The membrane-proximal intracytoplasmic tyrosine residue of HIV-1 envelope glycoprotein is critical for basolateral targeting of viral budding in MDCK cells. EMBO J 16:695–705 [View Article][PubMed]
    [Google Scholar]
  85. Lopez-Vergès S., Camus G., Blot G., Beauvoir R., Benarous R., Berlioz-Torrent C. 2006; Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions. Proc Natl Acad Sci U S A 103:14947–14952 [View Article][PubMed]
    [Google Scholar]
  86. Lu M., Blacklow S. C., Kim P. S. 1995; A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol 2:1075–1082 [View Article][PubMed]
    [Google Scholar]
  87. Lu L., Zhu Y., Huang J., Chen X., Yang H., Jiang S., Chen Y.-H. 2008; Surface exposure of the HIV-1 env cytoplasmic tail LLP2 domain during the membrane fusion process: interaction with gp41 fusion core. J Biol Chem 283:16723–16731 [View Article][PubMed]
    [Google Scholar]
  88. Luciw P. A., Fields B. N., Knipe D. M., Howley P. M. editors 2002 Fields' Virology Philadelphia: Lippincott-Raven;
    [Google Scholar]
  89. Marsh D. 2007; Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophys J 93:3884–3899 [View Article][PubMed]
    [Google Scholar]
  90. McCune J. M., Rabin L. B., Feinberg M. B., Lieberman M., Kosek J. C., Reyes G. R., Weissman I. L. 1988; Endoproteolytic cleavage of gp160 is required for the activation of human immunodeficiency virus. Cell 53:55–67 [View Article][PubMed]
    [Google Scholar]
  91. McElrath M. J., Haynes B. F. 2010; Induction of immunity to human immunodeficiency virus type-1 by vaccination. Immunity 33:542–554 [View Article][PubMed]
    [Google Scholar]
  92. Melikyan G. B. 2011; Membrane fusion mediated by human immunodeficiency virus envelope glycoprotein. Curr Top Membr 68:81–106 [View Article][PubMed]
    [Google Scholar]
  93. Micoli K. J., Pan G., Wu Y., Williams J. P., Cook W. J., McDonald J. M. 2000; Requirement of calmodulin binding by HIV-1 gp160 for enhanced FAS-mediated apoptosis. J Biol Chem 275:1233–1240 [View Article][PubMed]
    [Google Scholar]
  94. Miller M. A., Garry R. F., Jaynes J. M., Montelaro R. C. 1991; A structural correlation between lentivirus transmembrane proteins and natural cytolytic peptides. AIDS Res Hum Retroviruses 7:511–519 [View Article][PubMed]
    [Google Scholar]
  95. Miller M. A., Cloyd M. W., Liebmann J., Rinaldo C. R. Jr, Islam K. R., Wang S. Z., Mietzner T. A., Montelaro R. C. 1993a; Alterations in cell membrane permeability by the lentivirus lytic peptide (LLP-1) of HIV-1 transmembrane protein. Virology 196:89–100 [View Article][PubMed]
    [Google Scholar]
  96. Miller M. A., Mietzner T. A., Cloyd M. W., Robey W. G., Montelaro R. C. 1993b; Identification of a calmodulin-binding and inhibitory peptide domain in the HIV-1 transmembrane glycoprotein. AIDS Res Hum Retroviruses 9:1057–1066 [View Article][PubMed]
    [Google Scholar]
  97. Mitchell D. J., Steinman L., Kim D. T., Fathman C. G., Rothbard J. B. 2000; Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56:318–325 [View Article][PubMed]
    [Google Scholar]
  98. Montefiori D. C., Robinson W. E. Jr, Mitchell W. M. 1988; Role of protein N-glycosylation in pathogenesis of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 85:9248–9252 [View Article][PubMed]
    [Google Scholar]
  99. Montero M., van Houten N. E., Wang X., Scott J. K. 2008; The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Microbiol Mol Biol Rev 72:54–84 [View Article][PubMed]
    [Google Scholar]
  100. Muñoz-Barroso I., Salzwedel K., Hunter E., Blumenthal R. 1999; Role of the membrane-proximal domain in the initial stages of human immunodeficiency virus type 1 envelope glycoprotein-mediated membrane fusion. J Virol 73:6089–6092[PubMed]
    [Google Scholar]
  101. Murakami T. 2008; Roles of the interactions between Env and Gag proteins in the HIV-1 replication cycle. Microbiol Immunol 52:287–295 [View Article][PubMed]
    [Google Scholar]
  102. Murakami T., Freed E. O. 2000a; Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and alpha-helix 2 of the gp41 cytoplasmic tail. J Virol 74:3548–3554 [View Article][PubMed]
    [Google Scholar]
  103. Murakami T., Freed E. O. 2000b; The long cytoplasmic tail of gp41 is required in a cell type-dependent manner for HIV-1 envelope glycoprotein incorporation into virions. Proc Natl Acad Sci U S A 97:343–348 [View Article][PubMed]
    [Google Scholar]
  104. Murakami T., Ablan S., Freed E. O., Tanaka Y. 2004; Regulation of human immunodeficiency virus type 1 Env-mediated membrane fusion by viral protease activity. J Virol 78:1026–1031 [View Article][PubMed]
    [Google Scholar]
  105. Myszka D. G., Sweet R. W., Hensley P., Brigham-Burke M., Kwong P. D., Hendrickson W. A., Wyatt R., Sodroski J., Doyle M. L. 2000; Energetics of the HIV gp120-CD4 binding reaction. Proc Natl Acad Sci U S A 97:9026–9031 [View Article][PubMed]
    [Google Scholar]
  106. Nguyen D. H., Hildreth J. E. 2000; Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J Virol 74:3264–3272 [View Article][PubMed]
    [Google Scholar]
  107. Ohno H., Aguilar R. C., Fournier M. C., Hennecke S., Cosson P., Bonifacino J. S. 1997; Interaction of endocytic signals from the HIV-1 envelope glycoprotein complex with members of the adaptor medium chain family. Virology 238:305–315 [View Article][PubMed]
    [Google Scholar]
  108. Patil A., Gautam A., Bhattacharya J. 2010; Evidence that Gag facilitates HIV-1 envelope association both in GPI-enriched plasma membrane and detergent resistant membranes and facilitates envelope incorporation onto virions in primary CD4+ T cells. Virol J 7:3 [View Article][PubMed]
    [Google Scholar]
  109. Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E. 2004; UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612 [View Article][PubMed]
    [Google Scholar]
  110. Pinter A., Honnen W. J., Tilley S. A., Bona C., Zaghouani H., Gorny M. K., Zolla-Pazner S. 1989; Oligomeric structure of gp41, the transmembrane protein of human immunodeficiency virus type 1. J Virol 63:2674–2679[PubMed]
    [Google Scholar]
  111. Postler T. S., Desrosiers R. C. 2012; The cytoplasmic domain of the HIV-1 glycoprotein gp41 induces NF-κB activation through TGF-β-activated kinase 1. Cell Host Microbe 11:181–193 [View Article][PubMed]
    [Google Scholar]
  112. Postler T. S., Martinez-Navio J. M., Yuste E., Desrosiers R. C. 2012; Evidence against extracellular exposure of a highly immunogenic region in the C-terminal domain of the simian immunodeficiency virus gp41 transmembrane protein. J Virol 86:1145–1157 [View Article][PubMed]
    [Google Scholar]
  113. Preston B. D., Poiesz B. J., Loeb L. A. 1988; Fidelity of HIV-1 reverse transcriptase. Science 242:1168–1171 [View Article][PubMed]
    [Google Scholar]
  114. Reading S. A., Heap C. J., Dimmock N. J. 2003; A novel monoclonal antibody specific to the C-terminal tail of the gp41 envelope transmembrane protein of human immunodeficiency virus type 1 that preferentially neutralizes virus after it has attached to the target cell and inhibits the production of infectious progeny. Virology 315:362–372 [View Article][PubMed]
    [Google Scholar]
  115. Roberts J. D., Bebenek K., Kunkel T. A. 1988; The accuracy of reverse transcriptase from HIV-1. Science 242:1171–1173 [View Article][PubMed]
    [Google Scholar]
  116. Rousso I., Mixon M. B., Chen B. K., Kim P. S. 2000; Palmitoylation of the HIV-1 envelope glycoprotein is critical for viral infectivity. Proc Natl Acad Sci U S A 97:13523–13525 [View Article][PubMed]
    [Google Scholar]
  117. Rowell J. F., Stanhope P. E., Siliciano R. F. 1995; Endocytosis of endogenously synthesized HIV-1 envelope protein. Mechanism and role in processing for association with class II MHC. J Immunol 155:473–488[PubMed]
    [Google Scholar]
  118. Rushlow K., Olsen K., Stiegler G., Payne S. L., Montelaro R. C., Issel C. J. 1986; Lentivirus genomic organization: the complete nucleotide sequence of the Env gene region of equine infectious anemia virus. Virology 155:309–321 [View Article][PubMed]
    [Google Scholar]
  119. Salzwedel K., West J. T., Hunter E. 1999; A conserved tryptophan-rich motif in the membrane-proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Env-mediated fusion and virus infectivity. J Virol 73:2469–2480[PubMed]
    [Google Scholar]
  120. Sauter M. M., Pelchen-Matthews A., Bron R., Marsh M., LaBranche C. C., Vance P. J., Romano J., Haggarty B. S., Hart T. K. other authors 1996; An internalization signal in the simian immunodeficiency virus transmembrane protein cytoplasmic domain modulates expression of envelope glycoproteins on the cell surface. J Cell Biol 132:795–811 [View Article][PubMed]
    [Google Scholar]
  121. Schulz G. E. 2000; beta-Barrel membrane proteins. Curr Opin Struct Biol 10:443–447 [View Article][PubMed]
    [Google Scholar]
  122. Shacklett B. L., Weber C. J., Shaw K. E., Keddie E. M., Gardner M. B., Sonigo P., Luciw P. A. 2000; The intracytoplasmic domain of the Env transmembrane protein is a locus for attenuation of simian immunodeficiency virus SIVmac in rhesus macaques. J Virol 74:5836–5844 [View Article][PubMed]
    [Google Scholar]
  123. Shang L., Hunter E. 2010; Residues in the membrane-spanning domain core modulate conformation and fusogenicity of the HIV-1 envelope glycoprotein. Virology 404:158–167 [View Article][PubMed]
    [Google Scholar]
  124. Shang L., Yue L., Hunter E. 2008; Role of the membrane-spanning domain of human immunodeficiency virus type 1 envelope glycoprotein in cell-cell fusion and virus infection. J Virol 82:5417–5428 [View Article][PubMed]
    [Google Scholar]
  125. Shi W., Bohon J., Han D. P., Habte H., Qin Y., Cho M. W., Chance M. R. 2010; Structural characterization of HIV gp41 with the membrane-proximal external region. J Biol Chem 285:24290–24298 [View Article][PubMed]
    [Google Scholar]
  126. Spies C. P., Ritter G. D. Jr, Mulligan M. J., Compans R. W. 1994; Truncation of the cytoplasmic domain of the simian immunodeficiency virus envelope glycoprotein alters the conformation of the external domain. J Virol 68:585–591[PubMed]
    [Google Scholar]
  127. Srinivas S. K., Srinivas R. V., Anantharamaiah G. M., Segrest J. P., Compans R. W. 1992; Membrane interactions of synthetic peptides corresponding to amphipathic helical segments of the human immunodeficiency virus type-1 envelope glycoprotein. J Biol Chem 267:7121–7127[PubMed]
    [Google Scholar]
  128. Srinivas S. K., Srinivas R. V., Anantharamaiah G. M., Compans R. W., Segrest J. P. 1993; Cytosolic domain of the human immunodeficiency virus envelope glycoproteins binds to calmodulin and inhibits calmodulin-regulated proteins. J Biol Chem 268:22895–22899[PubMed]
    [Google Scholar]
  129. Starcich B. R., Hahn B. H., Shaw G. M., McNeely P. D., Modrow S., Wolf H., Parks E. S., Parks W. P., Josephs S. F. other authors 1986; Identification and characterization of conserved and variable regions in the envelope gene of HTLV-III/LAV, the retrovirus of AIDS. Cell 45:637–648 [View Article][PubMed]
    [Google Scholar]
  130. Steckbeck J. D., Sun C., Sturgeon T. J., Montelaro R. C. 2010; Topology of the C-terminal tail of HIV-1 gp41: differential exposure of the Kennedy epitope on cell and viral membranes. PLoS ONE 5:e15261 [View Article][PubMed]
    [Google Scholar]
  131. Steckbeck J. D., Craigo J. K., Barnes C. O., Montelaro R. C. 2011; Highly conserved structural properties of the C-terminal tail of HIV-1 gp41 protein despite substantial sequence variation among diverse clades: implications for functions in viral replication. J Biol Chem 286:27156–27166 [View Article][PubMed]
    [Google Scholar]
  132. Tencza S. B., Miller M. A., Islam K., Mietzner T. A., Montelaro R. C. 1995; Effect of amino acid substitutions on calmodulin binding and cytolytic properties of the LLP-1 peptide segment of human immunodeficiency virus type 1 transmembrane protein. J Virol 69:5199–5202[PubMed]
    [Google Scholar]
  133. Tillman T. S., Cascio M. 2003; Effects of membrane lipids on ion channel structure and function. Cell Biochem Biophys 38:161–190 [View Article][PubMed]
    [Google Scholar]
  134. Tristram-Nagle S., Nagle J. F. 2007; HIV-1 fusion peptide decreases bending energy and promotes curved fusion intermediates. Biophys J 93:2048–2055 [View Article][PubMed]
    [Google Scholar]
  135. Tristram-Nagle S., Chan R., Kooijman E., Uppamoochikkal P., Qiang W., Weliky D. P., Nagle J. F. 2010; HIV fusion peptide penetrates, disorders, and softens T-cell membrane mimics. J Mol Biol 402:139–153 [View Article][PubMed]
    [Google Scholar]
  136. Tung C.-H., Weissleder R. 2003; Arginine containing peptides as delivery vectors. Adv Drug Deliv Rev 55:281–294 [View Article][PubMed]
    [Google Scholar]
  137. van den Brink-van der Laan E., Killian J. A., de Kruijff B. 2004; Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim Biophys Acta 1666:275–288 [View Article][PubMed]
    [Google Scholar]
  138. Vella C., Ferguson M., Dunn G., Meloen R., Langedijk H., Evans D., Minor P. D. 1993; Characterization and primary structure of a human immunodeficiency virus type 1 (HIV-1) neutralization domain as presented by a poliovirus type 1/HIV-1 chimera. J Gen Virol 74:2603–2607 [View Article][PubMed]
    [Google Scholar]
  139. Viard M., Ablan S. D., Zhou M., Veenstra T. D., Freed E. O., Raviv Y., Blumenthal R. 2008; Photoinduced reactivity of the HIV-1 envelope glycoprotein with a membrane-embedded probe reveals insertion of portions of the HIV-1 gp41 cytoplasmic tail into the viral membrane. Biochemistry 47:1977–1983 [View Article][PubMed]
    [Google Scholar]
  140. Waheed A. A., Ablan S. D., Roser J. D., Sowder R. C., Schaffner C. P., Chertova E., Freed E. O. 2007; HIV-1 escape from the entry-inhibiting effects of a cholesterol-binding compound via cleavage of gp41 by the viral protease. Proc Natl Acad Sci U S A 104:8467–8471 [View Article][PubMed]
    [Google Scholar]
  141. Waheed A. A., Ablan S. D., Sowder R. C., Roser J. D., Schaffner C. P., Chertova E., Freed E. O. 2010; Effect of mutations in the human immunodeficiency virus type 1 protease on cleavage of the gp41 cytoplasmic tail. J Virol 84:3121–3126 [View Article][PubMed]
    [Google Scholar]
  142. Weissenhorn W., Dessen A., Harrison S. C., Skehel J. J., Wiley D. C. 1997; Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–430 [View Article][PubMed]
    [Google Scholar]
  143. White S. H., Wimley W. C. 1999; Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365 [View Article][PubMed]
    [Google Scholar]
  144. White T. A., Bartesaghi A., Borgnia M. J., Meyerson J. R., de la Cruz M. J. V., Bess J. W., Nandwani R., Hoxie J. A., Lifson J. D. other authors 2010; Molecular architectures of trimeric SIV and HIV-1 envelope glycoproteins on intact viruses: strain-dependent variation in quaternary structure. PLoS Pathog 6:e1001249 [View Article][PubMed]
    [Google Scholar]
  145. Willey R. L., Rutledge R. A., Dias S., Folks T., Theodore T., Buckler C. E., Martin M. A. 1986; Identification of conserved and divergent domains within the envelope gene of the acquired immunodeficiency syndrome retrovirus. Proc Natl Acad Sci U S A 83:5038–5042 [View Article][PubMed]
    [Google Scholar]
  146. Wu X., Yang Z.-Y., Li Y., Hogerkorp C.-M., Schief W. R., Seaman M. S., Zhou T., Schmidt S. D., Wu L. other authors 2010; Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329:856–861 [View Article][PubMed]
    [Google Scholar]
  147. Wyma D. J., Kotov A., Aiken C. 2000; Evidence for a stable interaction of gp41 with Pr55Gag in immature human immunodeficiency virus type 1 particles. J Virol 74:9381–9387 [View Article][PubMed]
    [Google Scholar]
  148. Wyma D. J., Jiang J., Shi J., Zhou J., Lineberger J. E., Miller M. D., Aiken C. 2004; Coupling of human immunodeficiency virus type 1 fusion to virion maturation: a novel role of the gp41 cytoplasmic tail. J Virol 78:3429–3435 [View Article][PubMed]
    [Google Scholar]
  149. Wyss S., Dimitrov A. S., Baribaud F., Edwards T. G., Blumenthal R., Hoxie J. A. 2005; Regulation of human immunodeficiency virus type 1 envelope glycoprotein fusion by a membrane-interactive domain in the gp41 cytoplasmic tail. J Virol 79:12231–12241 [View Article][PubMed]
    [Google Scholar]
  150. Yue L., Shang L., Hunter E. 2009; Truncation of the membrane-spanning domain of human immunodeficiency virus type 1 envelope glycoprotein defines elements required for fusion, incorporation, and infectivity. J Virol 83:11588–11598 [View Article][PubMed]
    [Google Scholar]
  151. Zhang H., Wang L., Kao S., Whitehead I. P., Hart M. J., Liu B., Duus K., Burridge K., Der C. J., Su L. 1999; Functional interaction between the cytoplasmic leucine-zipper domain of HIV-1 gp41 and p115-RhoGEF. Curr Biol 9:1271–1274 [View Article][PubMed]
    [Google Scholar]
  152. Zhou T., Xu L., Dey B., Hessell A. J., Van Ryk D., Xiang S.-H., Yang X., Zhang M.-Y., Zwick M. B. other authors 2007; Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445:732–737 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.046508-0
Loading
/content/journal/jgv/10.1099/vir.0.046508-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error