1887

Abstract

The temporal expression of the 54 (CIV) virion protein genes was investigated by combining drug treatments that inhibit protein or DNA synthesis and an RT-PCR strategy particularly suitable for non-polyadenylated mRNAs. This method generates a uniform 3′ terminus by ligation of a 5′-phosphorylated oligonucleotide to the 3′ end of the transcript that is recognized by a complementary primer during RT-PCR. This analysis showed that CIV virion proteins are encoded by genes in all three predetermined temporal classes: 23 immediate-early, 11 delayed-early and seven late virion gene transcripts were identified and assigned to ORFs. Early transcription of many virion protein genes supports the notion that virion proteins may also play essential roles in the initial stages of infection. In addition, some of the early gene products present in the virion may reflect the intracellular path that the virus follows during infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.046359-0
2013-01-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/1/187.html?itemId=/content/journal/jgv/10.1099/vir.0.046359-0&mimeType=html&fmt=ahah

References

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A.. & other authors ( 2000;). The genome sequence of Drosophila melanogaster. . Science 287:, 2185–2195. [CrossRef][PubMed]
    [Google Scholar]
  2. Barray S., Devauchelle G.. ( 1987;). Protein synthesis in cells infected by Chilo iridiscent virus: evidence for temporal control of three classes of induced polypeptides. . Ann Inst Pasteur Virol 138:, 253–261. [CrossRef]
    [Google Scholar]
  3. Cerutti M., Cerutti P., Devauchelle G.. ( 1989;). Infectivity of vesicles prepared from Chilo iridescent virus inner membrane: evidence for recombination between associated DNA fragments. . Virus Res 12:, 299–313. [CrossRef][PubMed]
    [Google Scholar]
  4. Chen L. M., Wang F., Song W. J., Hew C. L.. ( 2006;). Temporal and differential gene expression of Singapore grouper iridovirus. . J Gen Virol 87:, 2907–2915. [CrossRef][PubMed]
    [Google Scholar]
  5. Chinchari V. G., Yu W.. ( 1992;). Metabolism of host and viral mRNAs in frog virus 3-infected cells. . Virology 186:, 435–443. [CrossRef][PubMed]
    [Google Scholar]
  6. Chisholm G. E., Henner D. J.. ( 1988;). Multiple early transcripts and splicing of the Autographa californica nuclear polyhedrosis virus IE-1 gene. . J Virol 62:, 3193–3200.[PubMed]
    [Google Scholar]
  7. Constantino M., Christian P., Marina C. F., Williams T.. ( 2001;). A comparison of techniques for detecting Invertebrate iridescent virus 6. . J Virol Methods 98:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  8. Cooper J. A., Moss B.. ( 1979;). In vitro translation of immediate early, early, and late classes of RNA from vaccinia virus-infected cells. . Virology 96:, 368–380. [CrossRef][PubMed]
    [Google Scholar]
  9. D’Costa S. M., Yao H., Bilimoria S. L.. ( 2001;). Transcription and temporal cascade in Chilo iridescent virus infected cells. . Arch Virol 146:, 2165–2178. [CrossRef][PubMed]
    [Google Scholar]
  10. D’Costa S. M., Yao H. J., Bilimoria S. L.. ( 2004;). Transcriptional mapping in Chilo iridescent virus infections. . Arch Virol 149:, 723–742. [CrossRef][PubMed]
    [Google Scholar]
  11. Dizman Y. A., Demirbağ Z., İnce I. A., Nalçacioğlu R.. ( 2012;). Transcriptomic analysis of Chilo iridescent virus immediate early promoter. . Virus Res 167:, 353–357. [CrossRef][PubMed]
    [Google Scholar]
  12. Eaton H. E., Metcalf J., Penny E., Tcherepanov V., Upton C., Brunetti C. R.. ( 2007;). Comparative genomic analysis of the family Iridoviridae: re-annotating and defining the core set of iridovirus genes. . J Virol 4:, 11. [CrossRef]
    [Google Scholar]
  13. Eaton H. E., Ring B. A., Brunetti C. R.. ( 2010;). The genomic diversity and phylogenetic relationship in the family Iridoviridae. . Viruses 2:, 1458–1475. [CrossRef][PubMed]
    [Google Scholar]
  14. Frohman M. A., Dush M. K., Martin G. R.. ( 1988;). Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. . Proc Natl Acad Sci U S A 85:, 8998–9002. [CrossRef][PubMed]
    [Google Scholar]
  15. Goorha R.. ( 1981;). Frog virus 3 requires RNA polymerase II for its replication. . J Virol 37:, 496–499.[PubMed]
    [Google Scholar]
  16. Goorha R.. ( 1982;). Frog virus 3 DNA replication occurs in two stages. . J Virol 43:, 519–528.[PubMed]
    [Google Scholar]
  17. Granoff A.. ( 1984;). Frog virus 3: a DNA virus with an unusual life-style. . Prog Med Virol 30:, 187–198.[PubMed]
    [Google Scholar]
  18. İnce I. A., Westenberg M., Vlak J. M., Demirbağ Z., Nalçacioğlu R., van Oers M. M.. ( 2008;). Open reading frame 193R of Chilo iridescent virus encodes a functional inhibitor of apoptosis (IAP). . Virology 376:, 124–131. [CrossRef][PubMed]
    [Google Scholar]
  19. İnce I. A., Boeren S. A., van Oers M. M., Vervoort J. J. M., Vlak J. M.. ( 2010;). Proteomic analysis of Chilo iridescent virus. . Virology 405:, 253–258. [CrossRef][PubMed]
    [Google Scholar]
  20. Jakob N. J., Darai G.. ( 2002;). Molecular anatomy of Chilo iridescent virus genome and the evolution of viral genes. . Virus Genes 25:, 299–316. [CrossRef][PubMed]
    [Google Scholar]
  21. Jakob N. J., Müller K., Bahr U., Darai G.. ( 2001;). Analysis of the first complete DNA sequence of an invertebrate iridovirus: coding strategy of the genome of Chilo iridescent virus. . Virology 286:, 182–196. [CrossRef][PubMed]
    [Google Scholar]
  22. Kelly D. C., Tinsley T. W.. ( 1972;). The proteins of iridescent virus type 2 and 6. . J Invertebr Pathol 19:, 273–275. [CrossRef]
    [Google Scholar]
  23. King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J.. ( 2012;). Virus Taxonomy: Classification and Nomenclature of viruses: Ninth Report of the International Committee on Taxonomy of Viruses. San Diego, CA:: Elsevier Academic Press;.
    [Google Scholar]
  24. Liu X., Gorovsky M. A.. ( 1993;). Mapping the 5′ and 3′ ends of Tetrahymena thermophila mRNAs using RNA ligase mediated amplification of cDNA ends (RLM-RACE). . Nucleic Acids Res 21:, 4954–4960. [CrossRef][PubMed]
    [Google Scholar]
  25. Lua D. T., Yasuike M., Hirono I., Aoki T.. ( 2005;). Transcription program of red sea bream iridovirus as revealed by DNA microarrays. . J Virol 79:, 15151–15164. [CrossRef][PubMed]
    [Google Scholar]
  26. Lua D. T., Yasuike M., Hirono I., Kondo H., Aoki T.. ( 2007;). Transcription profile of red sea bream iridovirus in a fish model as revealed by viral DNA microarrays. . Virus Genes 35:, 499–461. [CrossRef][PubMed]
    [Google Scholar]
  27. Lua D. T., Hirono I., Kondo H., Aoki T.. ( 2008;). In vivo transcription analysis of Red sea bream iridovirus (RSIV) using DNA microarrays. . In Diseases in Asian Aquaculture VI. Fish Health Section, pp. 205–220. Edited by Bondad-Reantaso M. G., Mohan C. V., Crumlish M., Subasinghe R. P... Manila, Philippines:: Asian Fisheries Society;.
    [Google Scholar]
  28. Magrane M..UniProt Consortium. ( 2011;). UniProt Knowledgebase: a hub of integrated protein data. . Database (Oxford) 2011:, bar009. [CrossRef][PubMed]
    [Google Scholar]
  29. Majji S., Thodima V., Sample R., Whitley D., Deng Y., Mao J., Chinchar V. G.. ( 2009;). Transcriptome analysis of Frog virus 3, the type species of the genus Ranavirus, family Iridoviridae. . Virology 391:, 293–303. [CrossRef][PubMed]
    [Google Scholar]
  30. McMillan N. A., Kalmakoff J.. ( 1994;). RNA transcript mapping of the Wiseana iridescent virus genome. . Virus Res 32:, 343–352. [CrossRef][PubMed]
    [Google Scholar]
  31. Nalçacioğlu R., Marks H., Vlak J. M., Demirbaĝ Z., van Oers M. M.. ( 2003;). Promoter analysis of the Chilo iridescent virus DNA polymerase and major capsid protein genes. . Virology 317:, 321–329. [CrossRef][PubMed]
    [Google Scholar]
  32. Nalçacioğlu R., İnce I. A., Vlak J. M., Demirbag Z., van Oers M. M.. ( 2007;). The Chilo iridescent virus DNA polymerase promoter contains an essential AAAAT motif. . J Gen Virol 88:, 2488–2494. [CrossRef][PubMed]
    [Google Scholar]
  33. Scotto-Lavino E., Du G., Frohman M. A.. ( 2007;). Amplification of 5′ end cDNA with 'new RACE'. . Nat Protoc 1:, 3056–3061. [CrossRef]
    [Google Scholar]
  34. Tan W. G., Barkman T. J., Gregory Chinchar V., Essani K.. ( 2004;). Comparative genomic analyses of frog virus 3, type species of the genus Ranavirus (family Iridoviridae). . Virology 323:, 70–84. [CrossRef][PubMed]
    [Google Scholar]
  35. Teng Y., Hou Z., Gong J., Liu H., Xie X., Zhang L., Chen X., Qin Q. W.. ( 2008;). Whole-genome transcriptional profiles of a novel marine fish iridovirus, Singapore grouper iridovirus (SGIV) in virus-infected grouper spleen cell cultures and in orange-spotted grouper, Epinephulus coioides. . Virology 377:, 39–48. [CrossRef][PubMed]
    [Google Scholar]
  36. Tsai C. T., Lin C. H., Chang C. Y.. ( 2007;). Analysis of codon usage bias and base compositional constraints in iridovirus genomes. . Virus Res 126:, 196–206. [CrossRef][PubMed]
    [Google Scholar]
  37. Wang J. W., Deng R. Q., Wang X. Z., Huang Y. S., Xing K., Feng J. H., He J. G., Long Q. X.. ( 2003;). Cladistic analysis of iridoviruses based on protein and DNA sequences. . Arch Virol 148:, 2181–2194. [CrossRef][PubMed]
    [Google Scholar]
  38. Willis D. B., Granoff A.. ( 1976;). Macromolecular synthesis in cells infected with frog virus 3. V. The absence of polyadenylic acid in the majority of frog virus 3-specific mRNA species. . Virology 73:, 543–547. [CrossRef][PubMed]
    [Google Scholar]
  39. Willis D. B., Granoff A.. ( 1985;). Transactivation of an immediate-early frog virus 3 promoter by a virion protein. . J Virol 56:, 495–501.[PubMed]
    [Google Scholar]
  40. Willis D. B., Foglesong D., Granoff A.. ( 1984;). Nucleotide sequence of an immediate-early frog virus 3 gene. . J Virol 52:, 905–912.[PubMed]
    [Google Scholar]
  41. Wong C. K., Young V. L., Kleffmann T., Ward V. K.. ( 2011;). Genomic and proteomic analysis of invertebrate iridovirus type 9. . J Virol 85:, 7900–7911. [CrossRef][PubMed]
    [Google Scholar]
  42. Yan X., Yu Z., Zhang P., Battisti A. J., Holdaway H. A., Chipman P. R., Bajaj C., Bergoin M., Rossmann M. G., Baker T. S.. ( 2009;). The capsid proteins of a large, icosahedral dsDNA virus. . J Mol Biol 385:, 1287–1299. [CrossRef][PubMed]
    [Google Scholar]
  43. Zhuang F., Fuchs R. T., Sun Z., Zheng Y., Robb G. B.. ( 2012;). Structural bias in T4 ligase-mediated 3′-adapter ligation. . Nucleic Acids Res 40:, e54. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.046359-0
Loading
/content/journal/jgv/10.1099/vir.0.046359-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error