1887

Abstract

RNA editing mediated by adenosine deaminases acting on RNA (ADARs) converts adenosine (A) to inosine (I) residues in dsRNA templates. While ADAR-1-mediated editing was essentially described for RNA viruses, the present work addresses the issue for two δ-retroviruses, human T-cell leukemia virus type 2 and simian T-cell leukemia virus type 3 (HTLV-2 and STLV-3). We examined whether ADAR-1 could edit HTLV-2 and STLV-3 virus genomes in cell culture and . Using a highly sensitive PCR-based method, referred to as 3DI-PCR, we showed that ADAR-1 could hypermutate adenosine residues in HTLV-2. STLV-3 hypermutation was obtained without using 3DI-PCR, suggesting a higher mutation frequency for this virus. Detailed analysis of the dinucleotide editing context showed preferences for 5′ ArA and 5′ UrA. In conclusion, the present observations demonstrate that ADAR-1 massively edits HTLV-2 and STLV-3 retroviruses , but probably remains a rare phenomenon .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.045146-0
2012-12-01
2020-07-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/12/2646.html?itemId=/content/journal/jgv/10.1099/vir.0.045146-0&mimeType=html&fmt=ahah

References

  1. Bass B. L. 1997; RNA editing and hypermutation by adenosine deamination. Trends Biochem Sci 22:157–162 [CrossRef][PubMed]
    [Google Scholar]
  2. Bass B. L. 2002; RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846 [CrossRef][PubMed]
    [Google Scholar]
  3. Calattini S., Chevalier S. A., Duprez R., Afonso P., Froment A., Gessain A., Mahieux R. 2006; Human T-cell lymphotropic virus type 3: complete nucleotide sequence and characterization of the human tax3 protein. J Virol 80:9876–9888 [CrossRef][PubMed]
    [Google Scholar]
  4. Cattaneo R., Rebmann G., Schmid A., Baczko K., ter Meulen V., Billeter M. A. 1987; Altered transcription of a defective measles virus genome derived from a diseased human brain. EMBO J 6:681–688[PubMed]
    [Google Scholar]
  5. Cattaneo R., Schmid A., Eschle D., Baczko K., ter Meulen V., Billeter M. A. 1988; Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 55:255–265 [CrossRef][PubMed]
    [Google Scholar]
  6. Chen I. S., Quan S. G., Golde D. W. 1983; Human T-cell leukemia virus type II transforms normal human lymphocytes. Proc Natl Acad Sci U S A 80:7006–7009 [CrossRef][PubMed]
    [Google Scholar]
  7. Chen C. X., Cho D. S., Wang Q., Lai F., Carter K. C., Nishikura K. 2000; A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 6:755–767 [CrossRef][PubMed]
    [Google Scholar]
  8. Chevalier S. A., Walic M., Calattini S., Mallet A., Prévost M. C., Gessain A., Mahieux R. 2007; Construction and characterization of a full-length infectious simian T-cell lymphotropic virus type 3 molecular clone. J Virol 81:6276–6285 [CrossRef][PubMed]
    [Google Scholar]
  9. Doria M., Neri F., Gallo A., Farace M. G., Michienzi A. 2009; Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection. Nucleic Acids Res 37:5848–5858 [CrossRef][PubMed]
    [Google Scholar]
  10. Douceron E., Kaidarova Z., Miyazato P., Matsuoka M., Murphy E. L., Mahieux R. 2012; HTLV-2 APH-2 expression is correlated with proviral load but APH-2 does not promote lymphocytosis. J Infect Dis 205:82–86 [CrossRef][PubMed]
    [Google Scholar]
  11. Felder M. P., Laugier D., Yatsula B., Dezélée P., Calothy G., Marx M. 1994; Functional and biological properties of an avian variant long terminal repeat containing multiple A to G conversions in the U3 sequence. J Virol 68:4759–4767[PubMed]
    [Google Scholar]
  12. George C. X., Samuel C. E. 1999; Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc Natl Acad Sci U S A 96:4621–4626 [CrossRef][PubMed]
    [Google Scholar]
  13. Grande-Pérez A., Sierra S., Castro M. G., Domingo E., Lowenstein P. R. 2002; Molecular indetermination in the transition to error catastrophe: systematic elimination of lymphocytic choriomeningitis virus through mutagenesis does not correlate linearly with large increases in mutant spectrum complexity. Proc Natl Acad Sci U S A 99:12938–12943 [CrossRef][PubMed]
    [Google Scholar]
  14. Hajjar A. M., Linial M. L. 1995; Modification of retroviral RNA by double-stranded RNA adenosine deaminase. J Virol 69:5878–5882[PubMed]
    [Google Scholar]
  15. Lehmann K. A., Bass B. L. 2000; Double-stranded RNA adenosine deaminases ADAR1 and ADAR2 have overlapping specificities. Biochemistry 39:12875–12884 [CrossRef][PubMed]
    [Google Scholar]
  16. Li Y., Kappes J. C., Conway J. A., Price R. W., Shaw G. M., Hahn B. H. 1991; Molecular characterization of human immunodeficiency virus type 1 cloned directly from uncultured human brain tissue: identification of replication-competent and -defective viral genomes. J Virol 65:3973–3985[PubMed]
    [Google Scholar]
  17. Liu Y., George C. X., Patterson J. B., Samuel C. E. 1997; Functionally distinct double-stranded RNA-binding domains associated with alternative splice site variants of the interferon-inducible double-stranded RNA-specific adenosine deaminase. J Biol Chem 272:4419–4428 [CrossRef][PubMed]
    [Google Scholar]
  18. Mahieux R., Gessain A. 2011; HTLV-3/STLV-3 and HTLV-4 viruses: discovery, epidemiology, serology and molecular aspects. Viruses 3:1074–1090 [CrossRef][PubMed]
    [Google Scholar]
  19. Martínez I., Dopazo J., Melero J. A. 1997; Antigenic structure of the human respiratory syncytial virus G glycoprotein and relevance of hypermutation events for the generation of antigenic variants. J Gen Virol 78:2419–2429[PubMed]
    [Google Scholar]
  20. Melcher T., Maas S., Herb A., Sprengel R., Higuchi M., Seeburg P. H. 1996; RED2, a brain-specific member of the RNA-specific adenosine deaminase family. J Biol Chem 271:31795–31798 [CrossRef][PubMed]
    [Google Scholar]
  21. Murphy D. G., Dimock K., Kang C. Y. 1991; Numerous transitions in human parainfluenza virus 3 RNA recovered from persistently infected cells. Virology 181:760–763 [CrossRef][PubMed]
    [Google Scholar]
  22. O’Hara P. J., Nichol S. T., Horodyski F. M., Holland J. J. 1984; Vesicular stomatitis virus defective interfering particles can contain extensive genomic sequence rearrangements and base substitutions. Cell 36:915–924 [CrossRef][PubMed]
    [Google Scholar]
  23. Patterson J. B., Cornu T. I., Redwine J., Dales S., Lewicki H., Holz A., Thomas D., Billeter M. A., Oldstone M. B. 2001; Evidence that the hypermutated M protein of a subacute sclerosing panencephalitis measles virus actively contributes to the chronic progressive CNS disease. Virology 291:215–225 [CrossRef][PubMed]
    [Google Scholar]
  24. Phuphuakrat A., Kraiwong R., Boonarkart C., Lauhakirti D., Lee T. H., Auewarakul P. 2008; Double-stranded RNA adenosine deaminases enhance expression of human immunodeficiency virus type 1 proteins. J Virol 82:10864–10872 [CrossRef][PubMed]
    [Google Scholar]
  25. Rueda P., García-Barreno B., Melero J. A. 1994; Loss of conserved cysteine residues in the attachment (G) glycoprotein of two human respiratory syncytial virus escape mutants that contain multiple A-G substitutions (hypermutations). Virology 198:653–662 [CrossRef][PubMed]
    [Google Scholar]
  26. Samuel C. E. 2001; Antiviral actions of interferons. Clin Microbiol Rev 14:778–809 [CrossRef][PubMed]
    [Google Scholar]
  27. Slattery J. P., Franchini G., Gessain A. 1999; Genomic evolution, patterns of global dissemination, and interspecies transmission of human and simian T-cell leukemia/lymphotropic viruses. Genome Res 9:525–540[PubMed]
    [Google Scholar]
  28. Suspène R., Henry M., Guillot S., Wain-Hobson S., Vartanian J. P. 2005; Recovery of APOBEC3-edited human immunodeficiency virus G→A hypermutants by differential DNA denaturation PCR. J Gen Virol 86:125–129 [CrossRef][PubMed]
    [Google Scholar]
  29. Suspène R., Renard M., Henry M., Guétard D., Puyraimond-Zemmour D., Billecocq A., Bouloy M., Tangy F., Vartanian J. P., Wain-Hobson S. 2008; Inversing the natural hydrogen bonding rule to selectively amplify GC-rich ADAR-edited RNAs. Nucleic Acids Res 36:e72 [CrossRef][PubMed]
    [Google Scholar]
  30. Suspène R., Petit V., Puyraimond-Zemmour D., Aynaud M. M., Henry M., Guétard D., Rusniok C., Wain-Hobson S., Vartanian J. P. 2011; Double-stranded RNA adenosine deaminase ADAR-1-induced hypermutated genomes among inactivated seasonal influenza and live attenuated measles virus vaccines. J Virol 85:2458–2462 [CrossRef][PubMed]
    [Google Scholar]
  31. Taylor D. R., Puig M., Darnell M. E., Mihalik K., Feinstone S. M. 2005; New antiviral pathway that mediates hepatitis C virus replicon interferon sensitivity through ADAR1. J Virol 79:6291–6298 [CrossRef][PubMed]
    [Google Scholar]
  32. Tenoever B. R., Ng S. L., Chua M. A., McWhirter S. M., García-Sastre A., Maniatis T. 2007; Multiple functions of the IKK-related kinase IKKϵ in interferon-mediated antiviral immunity. Science 315:1274–1278 [CrossRef][PubMed]
    [Google Scholar]
  33. Wang Y., Samuel C. E. 2009; Adenosine deaminase ADAR1 increases gene expression at the translational level by decreasing protein kinase PKR-dependent eIF-2α phosphorylation. J Mol Biol 393:777–787 [CrossRef][PubMed]
    [Google Scholar]
  34. Wang Y., Zeng Y., Murray J. M., Nishikura K. 1995; Genomic organization and chromosomal location of the human dsRNA adenosine deaminase gene: the enzyme for glutamate-activated ion channel RNA editing. J Mol Biol 254:184–195 [CrossRef][PubMed]
    [Google Scholar]
  35. Wattel E., Vartanian J. P., Pannetier C., Wain-Hobson S. 1995; Clonal expansion of human T-cell leukemia virus type I-infected cells in asymptomatic and symptomatic carriers without malignancy. J Virol 69:2863–2868[PubMed]
    [Google Scholar]
  36. Wong T. C., Ayata M., Hirano A., Yoshikawa Y., Tsuruoka H., Yamanouchi K. 1989; Generalized and localized biased hypermutation affecting the matrix gene of a measles virus strain that causes subacute sclerosing panencephalitis. J Virol 63:5464–5468[PubMed]
    [Google Scholar]
  37. Wong T. C., Ayata M., Ueda S., Hirano A. 1991; Role of biased hypermutation in evolution of subacute sclerosing panencephalitis virus from progenitor acute measles virus. J Virol 65:2191–2199[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.045146-0
Loading
/content/journal/jgv/10.1099/vir.0.045146-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error