1887

Abstract

RNA editing mediated by adenosine deaminases acting on RNA (ADARs) converts adenosine (A) to inosine (I) residues in dsRNA templates. While ADAR-1-mediated editing was essentially described for RNA viruses, the present work addresses the issue for two δ-retroviruses, human T-cell leukemia virus type 2 and simian T-cell leukemia virus type 3 (HTLV-2 and STLV-3). We examined whether ADAR-1 could edit HTLV-2 and STLV-3 virus genomes in cell culture and . Using a highly sensitive PCR-based method, referred to as 3DI-PCR, we showed that ADAR-1 could hypermutate adenosine residues in HTLV-2. STLV-3 hypermutation was obtained without using 3DI-PCR, suggesting a higher mutation frequency for this virus. Detailed analysis of the dinucleotide editing context showed preferences for 5′ ArA and 5′ UrA. In conclusion, the present observations demonstrate that ADAR-1 massively edits HTLV-2 and STLV-3 retroviruses , but probably remains a rare phenomenon .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.045146-0
2012-12-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/12/2646.html?itemId=/content/journal/jgv/10.1099/vir.0.045146-0&mimeType=html&fmt=ahah

References

  1. Bass B. L.. ( 1997;). RNA editing and hypermutation by adenosine deamination. . Trends Biochem Sci 22:, 157–162. [CrossRef][PubMed]
    [Google Scholar]
  2. Bass B. L.. ( 2002;). RNA editing by adenosine deaminases that act on RNA. . Annu Rev Biochem 71:, 817–846. [CrossRef][PubMed]
    [Google Scholar]
  3. Calattini S., Chevalier S. A., Duprez R., Afonso P., Froment A., Gessain A., Mahieux R.. ( 2006;). Human T-cell lymphotropic virus type 3: complete nucleotide sequence and characterization of the human tax3 protein. . J Virol 80:, 9876–9888. [CrossRef][PubMed]
    [Google Scholar]
  4. Cattaneo R., Rebmann G., Schmid A., Baczko K., ter Meulen V., Billeter M. A.. ( 1987;). Altered transcription of a defective measles virus genome derived from a diseased human brain. . EMBO J 6:, 681–688.[PubMed]
    [Google Scholar]
  5. Cattaneo R., Schmid A., Eschle D., Baczko K., ter Meulen V., Billeter M. A.. ( 1988;). Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. . Cell 55:, 255–265. [CrossRef][PubMed]
    [Google Scholar]
  6. Chen I. S., Quan S. G., Golde D. W.. ( 1983;). Human T-cell leukemia virus type II transforms normal human lymphocytes. . Proc Natl Acad Sci U S A 80:, 7006–7009. [CrossRef][PubMed]
    [Google Scholar]
  7. Chen C. X., Cho D. S., Wang Q., Lai F., Carter K. C., Nishikura K.. ( 2000;). A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. . RNA 6:, 755–767. [CrossRef][PubMed]
    [Google Scholar]
  8. Chevalier S. A., Walic M., Calattini S., Mallet A., Prévost M. C., Gessain A., Mahieux R.. ( 2007;). Construction and characterization of a full-length infectious simian T-cell lymphotropic virus type 3 molecular clone. . J Virol 81:, 6276–6285. [CrossRef][PubMed]
    [Google Scholar]
  9. Doria M., Neri F., Gallo A., Farace M. G., Michienzi A.. ( 2009;). Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection. . Nucleic Acids Res 37:, 5848–5858. [CrossRef][PubMed]
    [Google Scholar]
  10. Douceron E., Kaidarova Z., Miyazato P., Matsuoka M., Murphy E. L., Mahieux R.. ( 2012;). HTLV-2 APH-2 expression is correlated with proviral load but APH-2 does not promote lymphocytosis. . J Infect Dis 205:, 82–86. [CrossRef][PubMed]
    [Google Scholar]
  11. Felder M. P., Laugier D., Yatsula B., Dezélée P., Calothy G., Marx M.. ( 1994;). Functional and biological properties of an avian variant long terminal repeat containing multiple A to G conversions in the U3 sequence. . J Virol 68:, 4759–4767.[PubMed]
    [Google Scholar]
  12. George C. X., Samuel C. E.. ( 1999;). Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. . Proc Natl Acad Sci U S A 96:, 4621–4626. [CrossRef][PubMed]
    [Google Scholar]
  13. Grande-Pérez A., Sierra S., Castro M. G., Domingo E., Lowenstein P. R.. ( 2002;). Molecular indetermination in the transition to error catastrophe: systematic elimination of lymphocytic choriomeningitis virus through mutagenesis does not correlate linearly with large increases in mutant spectrum complexity. . Proc Natl Acad Sci U S A 99:, 12938–12943. [CrossRef][PubMed]
    [Google Scholar]
  14. Hajjar A. M., Linial M. L.. ( 1995;). Modification of retroviral RNA by double-stranded RNA adenosine deaminase. . J Virol 69:, 5878–5882.[PubMed]
    [Google Scholar]
  15. Lehmann K. A., Bass B. L.. ( 2000;). Double-stranded RNA adenosine deaminases ADAR1 and ADAR2 have overlapping specificities. . Biochemistry 39:, 12875–12884. [CrossRef][PubMed]
    [Google Scholar]
  16. Li Y., Kappes J. C., Conway J. A., Price R. W., Shaw G. M., Hahn B. H.. ( 1991;). Molecular characterization of human immunodeficiency virus type 1 cloned directly from uncultured human brain tissue: identification of replication-competent and -defective viral genomes. . J Virol 65:, 3973–3985.[PubMed]
    [Google Scholar]
  17. Liu Y., George C. X., Patterson J. B., Samuel C. E.. ( 1997;). Functionally distinct double-stranded RNA-binding domains associated with alternative splice site variants of the interferon-inducible double-stranded RNA-specific adenosine deaminase. . J Biol Chem 272:, 4419–4428. [CrossRef][PubMed]
    [Google Scholar]
  18. Mahieux R., Gessain A.. ( 2011;). HTLV-3/STLV-3 and HTLV-4 viruses: discovery, epidemiology, serology and molecular aspects. . Viruses 3:, 1074–1090. [CrossRef][PubMed]
    [Google Scholar]
  19. Martínez I., Dopazo J., Melero J. A.. ( 1997;). Antigenic structure of the human respiratory syncytial virus G glycoprotein and relevance of hypermutation events for the generation of antigenic variants. . J Gen Virol 78:, 2419–2429.[PubMed]
    [Google Scholar]
  20. Melcher T., Maas S., Herb A., Sprengel R., Higuchi M., Seeburg P. H.. ( 1996;). RED2, a brain-specific member of the RNA-specific adenosine deaminase family. . J Biol Chem 271:, 31795–31798. [CrossRef][PubMed]
    [Google Scholar]
  21. Murphy D. G., Dimock K., Kang C. Y.. ( 1991;). Numerous transitions in human parainfluenza virus 3 RNA recovered from persistently infected cells. . Virology 181:, 760–763. [CrossRef][PubMed]
    [Google Scholar]
  22. O’Hara P. J., Nichol S. T., Horodyski F. M., Holland J. J.. ( 1984;). Vesicular stomatitis virus defective interfering particles can contain extensive genomic sequence rearrangements and base substitutions. . Cell 36:, 915–924. [CrossRef][PubMed]
    [Google Scholar]
  23. Patterson J. B., Cornu T. I., Redwine J., Dales S., Lewicki H., Holz A., Thomas D., Billeter M. A., Oldstone M. B.. ( 2001;). Evidence that the hypermutated M protein of a subacute sclerosing panencephalitis measles virus actively contributes to the chronic progressive CNS disease. . Virology 291:, 215–225. [CrossRef][PubMed]
    [Google Scholar]
  24. Phuphuakrat A., Kraiwong R., Boonarkart C., Lauhakirti D., Lee T. H., Auewarakul P.. ( 2008;). Double-stranded RNA adenosine deaminases enhance expression of human immunodeficiency virus type 1 proteins. . J Virol 82:, 10864–10872. [CrossRef][PubMed]
    [Google Scholar]
  25. Rueda P., García-Barreno B., Melero J. A.. ( 1994;). Loss of conserved cysteine residues in the attachment (G) glycoprotein of two human respiratory syncytial virus escape mutants that contain multiple A-G substitutions (hypermutations). . Virology 198:, 653–662. [CrossRef][PubMed]
    [Google Scholar]
  26. Samuel C. E.. ( 2001;). Antiviral actions of interferons. . Clin Microbiol Rev 14:, 778–809. [CrossRef][PubMed]
    [Google Scholar]
  27. Slattery J. P., Franchini G., Gessain A.. ( 1999;). Genomic evolution, patterns of global dissemination, and interspecies transmission of human and simian T-cell leukemia/lymphotropic viruses. . Genome Res 9:, 525–540.[PubMed]
    [Google Scholar]
  28. Suspène R., Henry M., Guillot S., Wain-Hobson S., Vartanian J. P.. ( 2005;). Recovery of APOBEC3-edited human immunodeficiency virus G→A hypermutants by differential DNA denaturation PCR. . J Gen Virol 86:, 125–129. [CrossRef][PubMed]
    [Google Scholar]
  29. Suspène R., Renard M., Henry M., Guétard D., Puyraimond-Zemmour D., Billecocq A., Bouloy M., Tangy F., Vartanian J. P., Wain-Hobson S.. ( 2008;). Inversing the natural hydrogen bonding rule to selectively amplify GC-rich ADAR-edited RNAs. . Nucleic Acids Res 36:, e72. [CrossRef][PubMed]
    [Google Scholar]
  30. Suspène R., Petit V., Puyraimond-Zemmour D., Aynaud M. M., Henry M., Guétard D., Rusniok C., Wain-Hobson S., Vartanian J. P.. ( 2011;). Double-stranded RNA adenosine deaminase ADAR-1-induced hypermutated genomes among inactivated seasonal influenza and live attenuated measles virus vaccines. . J Virol 85:, 2458–2462. [CrossRef][PubMed]
    [Google Scholar]
  31. Taylor D. R., Puig M., Darnell M. E., Mihalik K., Feinstone S. M.. ( 2005;). New antiviral pathway that mediates hepatitis C virus replicon interferon sensitivity through ADAR1. . J Virol 79:, 6291–6298. [CrossRef][PubMed]
    [Google Scholar]
  32. Tenoever B. R., Ng S. L., Chua M. A., McWhirter S. M., García-Sastre A., Maniatis T.. ( 2007;). Multiple functions of the IKK-related kinase IKKϵ in interferon-mediated antiviral immunity. . Science 315:, 1274–1278. [CrossRef][PubMed]
    [Google Scholar]
  33. Wang Y., Samuel C. E.. ( 2009;). Adenosine deaminase ADAR1 increases gene expression at the translational level by decreasing protein kinase PKR-dependent eIF-2α phosphorylation. . J Mol Biol 393:, 777–787. [CrossRef][PubMed]
    [Google Scholar]
  34. Wang Y., Zeng Y., Murray J. M., Nishikura K.. ( 1995;). Genomic organization and chromosomal location of the human dsRNA adenosine deaminase gene: the enzyme for glutamate-activated ion channel RNA editing. . J Mol Biol 254:, 184–195. [CrossRef][PubMed]
    [Google Scholar]
  35. Wattel E., Vartanian J. P., Pannetier C., Wain-Hobson S.. ( 1995;). Clonal expansion of human T-cell leukemia virus type I-infected cells in asymptomatic and symptomatic carriers without malignancy. . J Virol 69:, 2863–2868.[PubMed]
    [Google Scholar]
  36. Wong T. C., Ayata M., Hirano A., Yoshikawa Y., Tsuruoka H., Yamanouchi K.. ( 1989;). Generalized and localized biased hypermutation affecting the matrix gene of a measles virus strain that causes subacute sclerosing panencephalitis. . J Virol 63:, 5464–5468.[PubMed]
    [Google Scholar]
  37. Wong T. C., Ayata M., Ueda S., Hirano A.. ( 1991;). Role of biased hypermutation in evolution of subacute sclerosing panencephalitis virus from progenitor acute measles virus. . J Virol 65:, 2191–2199.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.045146-0
Loading
/content/journal/jgv/10.1099/vir.0.045146-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error