1887

Abstract

Dengue virus (DENV) causes dengue fever and dengue haemorrhagic fever/dengue shock syndrome, both considered major public-health problems worldwide. We generated a lethal DENV-2 strain (D220) by 10 additional cycles of subcutaneous inoculation of mice with supernatant from mosquito cells infected with the previously characterized strain D2S10, followed by harvesting of serum. D220 induces mortality at ten-fold lower doses than D2S10 in mice lacking only the alpha/beta interferon (IFN-α/β) receptor in C57BL/6 or 129 backgrounds under both non-enhanced and antibody-enhanced conditions. Sequence analysis of the complete viral genome revealed five amino acid changes between D220 and D2S10, of which two (K122I in envelope and V115A in NS4B) appear to account for the observed phenotypic differences between the viruses. By causing mortality at lower doses in C57BL/6 mice lacking only the IFN-α/β receptor, D220 constitutes an improved tool for study of DENV-induced pathogenesis, as well as for testing potential vaccines and antiviral drugs against DENV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.045088-0
2012-10-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/10/2152.html?itemId=/content/journal/jgv/10.1099/vir.0.045088-0&mimeType=html&fmt=ahah

References

  1. Balsitis S. J., Williams K. L., Lachica R., Flores D., Kyle J. L., Mehlhop E., Johnson S., Diamond M. S., Beatty P. R., Harris E.. ( 2010;). Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification. . PLoS Pathog 6:, e1000790. [CrossRef][PubMed]
    [Google Scholar]
  2. Blaney J. E. Jr, Manipon G. G., Firestone C. Y., Johnson D. H., Hanson C. T., Murphy B. R., Whitehead S. S.. ( 2003;). Mutations which enhance the replication of dengue virus type 4 and an antigenic chimeric dengue virus type 2/4 vaccine candidate in Vero cells. . Vaccine 21:, 4317–4327. [CrossRef][PubMed]
    [Google Scholar]
  3. Blaney J. E. Jr, Hanson C. T., Firestone C. Y., Hanley K. A., Murphy B. R., Whitehead S. S.. ( 2004;). Genetically modified, live attenuated dengue virus type 3 vaccine candidates. . Am J Trop Med Hyg 71:, 811–821.[PubMed]
    [Google Scholar]
  4. Halstead S. B.. ( 2003;). Neutralization and antibody-dependent enhancement of dengue viruses. . Adv Virus Res 60:, 421–467. [CrossRef][PubMed]
    [Google Scholar]
  5. Halstead S. B.. ( 2007;). Dengue. . Lancet 370:, 1644–1652. [CrossRef][PubMed]
    [Google Scholar]
  6. Henn M. R., Boutwell C. L., Charlebois P., Lennon N. J., Power K. A., Macalalad A. R., Berlin A. M., Malboeuf C. M., Ryan E. M.. & other authors ( 2012;). Whole genome deep sequencing of HIV-1 reveals the impact of early minor variants upon immune recognition during acute infection. . PLoS Pathog 8:, e1002529. [CrossRef][PubMed]
    [Google Scholar]
  7. Houng H. H., Hritz D., Kanesa-thasan N.. ( 2000;). Quantitative detection of dengue 2 virus using fluorogenic RT-PCR based on 3′-noncoding sequence. . J Virol Methods 86:, 1–11. [CrossRef][PubMed]
    [Google Scholar]
  8. Hung N. T., Lei H.-Y., Lan N. T., Lin Y.-S., Huang K.-J., Lien L. B., Lin C.-F., Yeh T.-M., Ha D. Q.. & other authors ( 2004;). Dengue hemorrhagic fever in infants: a study of clinical and cytokine profiles. . J Infect Dis 189:, 221–232. [CrossRef][PubMed]
    [Google Scholar]
  9. Johnson A. J., Roehrig J. T.. ( 1999;). New mouse model for dengue virus vaccine testing. . J Virol 73:, 783–786.[PubMed]
    [Google Scholar]
  10. Lennon N. J., Lintner R. E., Anderson S., Alvarez P., Barry A., Brockman W., Daza R., Erlich R. L., Giannoukos G.. & other authors ( 2010;). A scalable, fully automated process for construction of sequence-ready barcoded libraries for 454. . Genome Biol 11:, R15. [CrossRef][PubMed]
    [Google Scholar]
  11. Macalalad A. R., Zody M. C., Charlebois P., Lennon N. J., Newman R. M., Malboeuf C. M., Ryan E. M., Boutwell C. L., Power K. A.. & other authors ( 2012;). Highly sensitive and specific detection of rare variants in mixed viral populations from massively parallel sequence data. . PLOS Comput Biol 8:, e1002417. [CrossRef][PubMed]
    [Google Scholar]
  12. Muñoz-Jordán J. L., Laurent-Rolle M., Ashour J., Martínez-Sobrido L., Ashok M., Lipkin W. I., García-Sastre A.. ( 2005;). Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. . J Virol 79:, 8004–8013. [CrossRef][PubMed]
    [Google Scholar]
  13. Parameswaran P., Charlebois P., Tellez Y., Nunez A., Ryan E. M., Malboeuf C. M., Levin J. Z., Lennon N. J., Balmaseda A.. & other authors ( 2012;). Genome-wide patterns of intra-human dengue virus diversity reveal associations with viral phylogenetic clade and inter-host diversity. . J Virol. (In press) [CrossRef][PubMed]
    [Google Scholar]
  14. Pérez A. B., García G., Sierra B., Alvarez M., Vázquez S., Cabrera M. V., Rodríguez R., Rosario D., Martínez E.. & other authors ( 2004;). IL-10 levels in Dengue patients: some findings from the exceptional epidemiological conditions in Cuba. . J Med Virol 73:, 230–234. [CrossRef][PubMed]
    [Google Scholar]
  15. Perry S. T., Prestwood T. R., Lada S. M., Benedict C. A., Shresta S.. ( 2009;). Cardif-mediated signaling controls the initial innate response to dengue virus in vivo. . J Virol 83:, 8276–8281. [CrossRef][PubMed]
    [Google Scholar]
  16. Prestwood T. R., Prigozhin D. M., Sharar K. L., Zellweger R. M., Shresta S.. ( 2008;). A mouse-passaged dengue virus strain with reduced affinity for heparan sulfate causes severe disease in mice by establishing increased systemic viral loads. . J Virol 82:, 8411–8421. [CrossRef][PubMed]
    [Google Scholar]
  17. Raut C. G., Deolankar R. P., Kolhapure R. M., Goverdhan M. K.. ( 1996;). Susceptibility of laboratory-bred rodents to the experimental infection with dengue virus type 2. . Acta Virol 40:, 143–146.[PubMed]
    [Google Scholar]
  18. Schlesinger R. W.. ( 1977;). Dengue viruses. . Virol Monogr 16:, 1–132.[PubMed]
    [Google Scholar]
  19. Shresta S., Sharar K. L., Prigozhin D. M., Beatty P. R., Harris E.. ( 2006;). Murine model for dengue virus-induced lethal disease with increased vascular permeability. . J Virol 80:, 10208–10217. [CrossRef][PubMed]
    [Google Scholar]
  20. Vignuzzi M., Stone J. K., Arnold J. J., Cameron C. E., Andino R.. ( 2006;). Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. . Nature 439:, 344–348. [CrossRef][PubMed]
    [Google Scholar]
  21. WHO ( 2009;). Dengue: Guidelines for Diagnosis, Treatment, Prevention, and Control. Geneva:: World Health Organization;.
    [Google Scholar]
  22. Wu-Hsieh B. A., Yen Y. T., Chen H. C.. ( 2009;). Dengue hemorrhage in a mouse model. . Ann N Y Acad Sci 1171: (Suppl. 1), E42–E47. [CrossRef][PubMed]
    [Google Scholar]
  23. Zellweger R. M., Prestwood T. R., Shresta S.. ( 2010;). Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease. . Cell Host Microbe 7:, 128–139. [CrossRef][PubMed]
    [Google Scholar]
  24. Zompi S., Harris E.. ( 2012;). Animal models of dengue virus infection. . Viruses 4:, 62–82. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.045088-0
Loading
/content/journal/jgv/10.1099/vir.0.045088-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error