1887

Abstract

Vectors based on adeno-associated virus serotype 2 (AAV2) belong to today’s most promising and most frequently used viral vectors in human gene therapy. Like in many other vector systems, the broad but non-specific tropism limits their use for certain cell types or tissues. One approach to screen for transduction-improved vectors is the selection of random peptide libraries displayed directly on the AAV2 capsid. Although the AAV2 library system has been widely applied for the successful selection of improved gene therapy vectors, it remains unknown which steps of the transduction process are most affected and therefore critical for the selection of targeting peptides. Attachment to the cell surface is the first essential step of AAV-mediated gene transduction; however, our experiments challenge the conventional belief that enhanced gene transfer is equivalent to more efficient cell binding of recombinant AAV2 vectors. A comparison of the various steps of gene transfer by vectors carrying a wild-type AAV2 capsid or displaying two exemplary peptide ligands selected from AAV2 random libraries on different human tumour cell lines demonstrated strong alterations in cell binding, cellular uptake, as well as intracellular processing of these vectors. Combined, our results suggest that entry and post-entry events are decisive for the selection of the peptides NDVRSAN and GPQGKNS rather than their cell binding efficiency.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.044735-0
2012-10-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/10/2131.html?itemId=/content/journal/jgv/10.1099/vir.0.044735-0&mimeType=html&fmt=ahah

References

  1. Bartel M. A. , Weinstein J. R. , Schaffer D. V. . ( 2012; ). Directed evolution of novel adeno-associated viruses for therapeutic gene delivery. . Gene Ther 19:, 694–700. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bartlett J. S. , Wilcher R. , Samulski R. J. . ( 2000; ). Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. . J Virol 74:, 2777–2785. [CrossRef] [PubMed]
    [Google Scholar]
  3. Daya S. , Berns K. I. . ( 2008; ). Gene therapy using adeno-associated virus vectors. . Clin Microbiol Rev 21:, 583–593. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ding W. , Zhang L. , Yan Z. , Engelhardt J. F. . ( 2005; ). Intracellular trafficking of adeno-associated viral vectors. . Gene Ther 12:, 873–880. [CrossRef] [PubMed]
    [Google Scholar]
  5. Duan D. , Yue Y. , Yan Z. , Yang J. , Engelhardt J. F. . ( 2000; ). Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. . J Clin Invest 105:, 1573–1587. [CrossRef] [PubMed]
    [Google Scholar]
  6. Ferrari F. K. , Samulski T. , Shenk T. , Samulski R. J. . ( 1996; ). Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. . J Virol 70:, 3227–3234.[PubMed]
    [Google Scholar]
  7. Fisher K. J. , Gao G. P. , Weitzman M. D. , DeMatteo R. , Burda J. F. , Wilson J. M. . ( 1996; ). Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. . J Virol 70:, 520–532.[PubMed]
    [Google Scholar]
  8. Grimm D. , Kern A. , Pawlita M. , Ferrari F. , Samulski R. , Kleinschmidt J. . ( 1999; ). Titration of AAV-2 particles via a novel capsid ELISA: packaging of genomes can limit production of recombinant AAV-2. . Gene Ther 6:, 1322–1330. [CrossRef] [PubMed]
    [Google Scholar]
  9. Hauswirth W. W. , Lewin A. S. , Zolotukhin S. , Muzyczka N. . ( 2000; ). Production and purification of recombinant adeno-associated virus. . Methods Enzymol 316:, 743–761. [CrossRef] [PubMed]
    [Google Scholar]
  10. Heilbronn R. , Weger S. . ( 2010; ). Viral vectors for gene transfer: current status of gene therapeutics. . Handb Exp Pharmacol 197:, 143–170. [CrossRef] [PubMed]
    [Google Scholar]
  11. Johnson J. S. , Samulski R. J. . ( 2009; ). Enhancement of adeno-associated virus infection by mobilizing capsids into and out of the nucleolus. . J Virol 83:, 2632–2644. [CrossRef] [PubMed]
    [Google Scholar]
  12. Johnson J. S. , Li C. , DiPrimio N. , Weinberg M. S. , McCown T. J. , Samulski R. J. . ( 2010; ). Mutagenesis of adeno-associated virus type 2 capsid protein VP1 uncovers new roles for basic amino acids in trafficking and cell-specific transduction. . J Virol 84:, 8888–8902. [CrossRef] [PubMed]
    [Google Scholar]
  13. Karcher S. , Steiner H. H. , Ahmadi R. , Zoubaa S. , Vasvari G. , Bauer H. , Unterberg A. , Herold-Mende C. . ( 2006; ). Different angiogenic phenotypes in primary and secondary glioblastomas. . Int J Cancer 118:, 2182–2189. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kay M. A. . ( 2011; ). State-of-the-art gene-based therapies: the road ahead. . Nat Rev Genet 12:, 316–328. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kern A. , Schmidt K. , Leder C. , Müller O. J. , Wobus C. E. , Bettinger K. , Von der Lieth C. W. , King J. A. , Kleinschmidt J. A. . ( 2003; ). Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. . J Virol 77:, 11072–11081. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kronenberg S. , Böttcher B. , von der Lieth C. W. , Bleker S. , Kleinschmidt J. A. . ( 2005; ). A conformational change in the adeno-associated virus type 2 capsid leads to the exposure of hidden VP1 N termini. . J Virol 79:, 5296–5303. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lux K. , Goerlitz N. , Schlemminger S. , Perabo L. , Goldnau D. , Endell J. , Leike K. , Kofler D. M. , Finke S. . & other authors ( 2005; ). Green fluorescent protein-tagged adeno-associated virus particles allow the study of cytosolic and nuclear trafficking. . J Virol 79:, 11776–11787. [CrossRef] [PubMed]
    [Google Scholar]
  18. Michelfelder S. , Trepel M. . ( 2009; ). Adeno-associated viral vectors and their redirection to cell-type specific receptors. . Adv Genet 67:, 29–60. [CrossRef] [PubMed]
    [Google Scholar]
  19. Michelfelder S. , Lee M. K. , deLima-Hahn E. , Wilmes T. , Kaul F. , Müller O. , Kleinschmidt J. A. , Trepel M. . ( 2007; ). Vectors selected from adeno-associated viral display peptide libraries for leukemia cell-targeted cytotoxic gene therapy. . Exp Hematol 35:, 1766–1776. [CrossRef] [PubMed]
    [Google Scholar]
  20. Michelfelder S. , Kohlschütter J. , Skorupa A. , Pfennings S. , Müller O. , Kleinschmidt J. A. , Trepel M. . ( 2009; ). Successful expansion but not complete restriction of tropism of adeno-associated virus by in vivo biopanning of random virus display peptide libraries. . PLoS ONE 4:, e5122. [CrossRef] [PubMed]
    [Google Scholar]
  21. Mingozzi F. , High K. A. . ( 2011; ). Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. . Nat Rev Genet 12:, 341–355. [CrossRef] [PubMed]
    [Google Scholar]
  22. Mitchell A. M. , Nicolson S. C. , Warischalk J. K. , Samulski R. J. . ( 2010; ). AAV’s anatomy: roadmap for optimizing vectors for translational success. . Curr Gene Ther 10:, 319–340.[PubMed] [CrossRef]
    [Google Scholar]
  23. Mueller C. , Flotte T. R. . ( 2008; ). Clinical gene therapy using recombinant adeno-associated virus vectors. . Gene Ther 15:, 858–863. [CrossRef] [PubMed]
    [Google Scholar]
  24. Müller O. J. , Kaul F. , Weitzman M. D. , Pasqualini R. , Arap W. , Kleinschmidt J. A. , Trepel M. . ( 2003; ). Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. . Nat Biotechnol 21:, 1040–1046. [CrossRef] [PubMed]
    [Google Scholar]
  25. Naumer M. , Ying Y. , Michelfelder S. , Reuter A. , Trepel M. , Müller O. J. , Kleinschmidt J. A. . ( 2012; ). Development and validation of novel AAV2 random libraries displaying peptides of diverse lengths and at diverse capsid positions. . Hum Gene Ther 23:, 492–507. [CrossRef] [PubMed]
    [Google Scholar]
  26. Nettelbeck D. M. , Rivera A. A. , Kupsch J. , Dieckmann D. , Douglas J. T. , Kontermann R. E. , Alemany R. , Curiel D. T. . ( 2004; ). Retargeting of adenoviral infection to melanoma: combining genetic ablation of native tropism with a recombinant bispecific single-chain diabody (scDb) adapter that binds to fiber knob and HMWMAA. . Int J Cancer 108:, 136–145. [CrossRef] [PubMed]
    [Google Scholar]
  27. Nonnenmacher M. , Weber T. . ( 2012; ). Intracellular transport of recombinant adeno-associated virus vectors. . Gene Ther 19:, 649–658. [CrossRef] [PubMed]
    [Google Scholar]
  28. Opie S. R. , Warrington K. H. Jr , Agbandje-McKenna M. , Zolotukhin S. , Muzyczka N. . ( 2003; ). Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding. . J Virol 77:, 6995–7006. [CrossRef] [PubMed]
    [Google Scholar]
  29. Perabo L. , Büning H. , Kofler D. M. , Ried M. U. , Girod A. , Wendtner C. M. , Enssle J. , Hallek M. . ( 2003; ). In vitro selection of viral vectors with modified tropism: the adeno-associated virus display. . Mol Ther 8:, 151–157. [CrossRef] [PubMed]
    [Google Scholar]
  30. Perabo L. , Goldnau D. , White K. , Endell J. , Boucas J. , Humme S. , Work L. M. , Janicki H. , Hallek M. . & other authors ( 2006; ). Heparan sulfate proteoglycan binding properties of adeno-associated virus retargeting mutants and consequences for their in vivo tropism. . J Virol 80:, 7265–7269. [CrossRef] [PubMed]
    [Google Scholar]
  31. Schaffer D. V. , Koerber J. T. , Lim K. I. . ( 2008; ). Molecular engineering of viral gene delivery vehicles. . Annu Rev Biomed Eng 10:, 169–194. [CrossRef] [PubMed]
    [Google Scholar]
  32. Sonntag F. , Bleker S. , Leuchs B. , Fischer R. , Kleinschmidt J. A. . ( 2006; ). Adeno-associated virus type 2 capsids with externalized VP1/VP2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus. . J Virol 80:, 11040–11054. [CrossRef] [PubMed]
    [Google Scholar]
  33. Veldwijk M. R. , Topaly J. , Laufs S. , Hengge U. R. , Wenz F. , Zeller W. J. , Fruehauf S. . ( 2002; ). Development and optimization of a real-time quantitative PCR-based method for the titration of AAV-2 vector stocks. . Mol Ther 6:, 272–278. [CrossRef] [PubMed]
    [Google Scholar]
  34. Waterkamp D. A. , Müller O. J. , Ying Y. , Trepel M. , Kleinschmidt J. A. . ( 2006; ). Isolation of targeted AAV2 vectors from novel virus display libraries. . J Gene Med 8:, 1307–1319. [CrossRef] [PubMed]
    [Google Scholar]
  35. Wistuba A. , Weger S. , Kern A. , Kleinschmidt J. A. . ( 1995; ). Intermediates of adeno-associated virus type 2 assembly: identification of soluble complexes containing Rep and Cap proteins. . J Virol 69:, 5311–5319.[PubMed]
    [Google Scholar]
  36. Yan Z. , Zak R. , Luxton G. W. , Ritchie T. C. , Bantel-Schaal U. , Engelhardt J. F. . ( 2002; ). Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors. . J Virol 76:, 2043–2053. [CrossRef] [PubMed]
    [Google Scholar]
  37. Ying Y. , Müller O. J. , Goehringer C. , Leuchs B. , Trepel M. , Katus H. A. , Kleinschmidt J. A. . ( 2010; ). Heart-targeted adeno-associated viral vectors selected by in vivo biopanning of a random viral display peptide library. . Gene Ther 17:, 980–990. [CrossRef] [PubMed]
    [Google Scholar]
  38. Zhong L. , Li B. , Jayandharan G. , Mah C. S. , Govindasamy L. , Agbandje-McKenna M. , Herzog R. W. , Weigel-Van Aken K. A. , Hobbs J. A. . & other authors ( 2008; ). Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. . Virology 381:, 194–202. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.044735-0
Loading
/content/journal/jgv/10.1099/vir.0.044735-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error