1887

Abstract

Population bottlenecks can have major effects in the evolution of RNA viruses, but their possible influence in the evolution of DNA viruses is largely unknown. Genetic and biological variation of herpes simplex virus type 1 (HSV-1) has been studied by subjecting 23 biological clones of the virus to 10 plaque-to-plaque transfers. In contrast to large population passages, plaque transfers led to a decrease in replicative capacity of HSV-1. Two out of a total of 23 clones did not survive to the last transfer in 143 TK cells. DNA from three genomic regions (DNA polymerase, glycoprotein gD and thymidine kinase) from the initial and passaged clones was sequenced. Nucleotide substitutions were detected in the TK and gD genes, but not in the DNA polymerase gene. Assuming a uniform distribution of mutations along the genome, the average rate of fixation of mutations was about five mutations per viral genome and plaque transfer. This value is comparable to the range of values calculated for RNA viruses. Four plaque-transferred populations lost neurovirulence for mice, as compared with the corresponding initial clones. LD values obtained with the populations subjected to serial bottlenecks were 4- to 67-fold higher than for their parental clones. These results equate HSV-1 with RNA viruses regarding fitness decrease as a result of plaque–to-plaque transfers, and show that population bottlenecks can modify the pathogenic potential of HSV-1. Implications for the evolution of complex DNA viruses are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.044685-0
2013-02-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/2/366.html?itemId=/content/journal/jgv/10.1099/vir.0.044685-0&mimeType=html&fmt=ahah

References

  1. Agresti A. . ( 2002; ). Categorical Data Analysis. New Jersey: Wiley.. [CrossRef]
  2. Allen J. M. , Light J. E. , Perotti M. A. , Braig H. R. , Reed D. L. . ( 2009; ). Mutational meltdown in primary endosymbionts: selection limits Muller’s ratchet. . PLoS ONE 4:, e4969. [CrossRef] [PubMed]
    [Google Scholar]
  3. Andersson D. I. , Hughes D. . ( 1996; ). Muller’s ratchet decreases fitness of a DNA-based microbe. . Proc Natl Acad Sci U S A 93:, 906–907. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ashley R. L. , Corey L. . ( 1989; ). Herpes simplex Virus. . In Diagnostic Procedures for Viral, Rickettsial and Chlamydial Infections, , 6th edn., p. 297. Edited by Schmidt N. J. , Emmons R. W. . . Washington, DC:: American Public Health Association;.
    [Google Scholar]
  5. Batschelet E. , Domingo E. , Weissmann C. . ( 1976; ). The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. . Gene 1:, 27–32. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bell G. . ( 1988; ). Sex and Death in Protozoa. The History of an Obsession. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  7. Biswas S. , Field H. J. . ( 2008; ). Herpes simplex virus helicase-primase inhibitors: recent findings from the study of drug resistance mutations. . Antivir Chem Chemother 19:, 1–6.[PubMed] [CrossRef]
    [Google Scholar]
  8. Brault S. A. , Bird B. H. , Balasuriya U. B. , MacLachlan N. J. . ( 2011; ). Genetic heterogeneity and variation in viral load during equid herpesvirus-2 infection of foals. . Vet Microbiol 147:, 253–261. [CrossRef] [PubMed]
    [Google Scholar]
  9. Campione-Piccardo J. , Rawls W. E. , Bacchetti S. . ( 1979; ). Selective assay for herpes simplex viruses expressing thymidine kinase. . J Virol 31:, 281–287.[PubMed]
    [Google Scholar]
  10. Chao L. . ( 1990; ). Fitness of RNA virus decreased by Muller’s ratchet. . Nature 348:, 454–455. [CrossRef] [PubMed]
    [Google Scholar]
  11. Clarke D. K. , Duarte E. A. , Moya A. , Elena S. F. , Domingo E. , Holland J. . ( 1993; ). Genetic bottlenecks and population passages cause profound fitness differences in RNA viruses. . J Virol 67:, 222–228.[PubMed]
    [Google Scholar]
  12. Coates D. J. . ( 1992; ). Genetic consequences of a bottleneckand spartial genetic structure in the triggerplant Stylidium coroniforme (Stylidiaceae). . Heredity 69:, 512–520. [CrossRef]
    [Google Scholar]
  13. Colato A. , Fontanari J. F. . ( 2001; ). Soluble model for the accumulation of mutations in asexual populations. . Phys Rev Lett 87:, 238102. [CrossRef] [PubMed]
    [Google Scholar]
  14. de la Iglesia F. , Elena S. F. . ( 2007; ). Fitness declines in tobacco etch virus upon serial bottleneck transfers. . J Virol 81:, 4941–4947. [CrossRef] [PubMed]
    [Google Scholar]
  15. Denison M. R. , Graham R. L. , Donaldson E. F. , Eckerle L. D. , Baric R. S. . ( 2011; ). Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. . RNA Biol 8:, 270–279. [CrossRef] [PubMed]
    [Google Scholar]
  16. Domingo E. , Holland J. J. . ( 1997; ). RNA virus mutations and fitness for survival. . Annu Rev Microbiol 51:, 151–178. [CrossRef] [PubMed]
    [Google Scholar]
  17. Domingo E. , Escarmís C. , Sevilla N. , Moya A. , Elena S. F. , Quer J. , Novella I. S. , Holland J. J. . ( 1996; ). Basic concepts in RNA virus evolution. . FASEB J 10:, 859–864.[PubMed]
    [Google Scholar]
  18. Domingo E. , Biebricher C. K. , Eigen M. , Holland J. J. . ( 2001a; ). Quasiespecies and RNA Virus Evolution, Principles and Consequences. Georgetown, Texas:: Landes Bioscience;.
    [Google Scholar]
  19. Domingo E. , Mas A. , Yuste E. , Pariente N. , Sierra S. , Gutiérrez-Riva M. , Menéndez-Arias L. . ( 2001b; ). Virus population dynamics, fitness variations and the control of viral disease: an update. . Prog Drug Res 57:, 77–115.[PubMed]
    [Google Scholar]
  20. Domingo E. , Martin V. , Perales C. , Grande-Pérez A. , García-Arriaza J. , Arias A. . ( 2006; ). Viruses as quasispecies: biological implications. . Curr Top Microbiol Immunol 299:, 51–82. [CrossRef] [PubMed]
    [Google Scholar]
  21. Drake J. W. . ( 1991; ). A constant rate of spontaneous mutation in DNA-based microbes. . Proc Natl Acad Sci U S A 88:, 7160–7164. [CrossRef] [PubMed]
    [Google Scholar]
  22. Drake J. W. , Holland J. J. . ( 1999; ). Mutation rates among RNA viruses. . Proc Natl Acad Sci U S A 96:, 13910–13913. [CrossRef] [PubMed]
    [Google Scholar]
  23. Drake J. W. , Hwang C. B. . ( 2005; ). On the mutation rate of herpes simplex virus type 1. . Genetics 170:, 969–970. [CrossRef] [PubMed]
    [Google Scholar]
  24. Duarte E. , Clarke D. , Moya A. , Domingo E. , Holland J. . ( 1992; ). Rapid fitness losses in mammalian RNA virus clones due to Muller’s ratchet. . Proc Natl Acad Sci U S A 89:, 6015–6019. [CrossRef] [PubMed]
    [Google Scholar]
  25. Duarte E. A. , Novella I. S. , Ledesma S. , Clarke D. K. , Moya A. , Elena S. F. , Domingo E. , Holland J. J. . ( 1994; ). Subclonal components of consensus fitness in an RNA virus clone. . J Virol 68:, 4295–4301.[PubMed]
    [Google Scholar]
  26. Eckerle L. D. , Lu X. , Sperry S. M. , Choi L. , Denison M. R. . ( 2007; ). High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. . J Virol 81:, 12135–12144. [CrossRef] [PubMed]
    [Google Scholar]
  27. Eckerle L. D. , Becker M. M. , Halpin R. A. , Li K. , Venter E. , Lu X. , Scherbakova S. , Graham R. L. , Baric R. S. . & other authors ( 2010; ). Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. . PLoS Pathog 6:, e1000896. [CrossRef] [PubMed]
    [Google Scholar]
  28. Eigen M. , Schuster P. . ( 1979; ). The Hypercycle. A Principle of Natural Self-Organization. Berlin:: Springer;. [CrossRef]
    [Google Scholar]
  29. Ejercito P. M. , Kieff E. D. , Roizman B. . ( 1968; ). Characterization of herpes simplex virus strains differing in their effects on social behaviour of infected cells. . J Gen Virol 2:, 357–364. [CrossRef] [PubMed]
    [Google Scholar]
  30. Elde N. C. , Child S. J. , Eickbush M. T. , Kitzman J. O. , Rogers K. S. , Shendure J. , Geballe A. P. , Malik H. S. . ( 2012; ). Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. . Cell 150:, 831–841. [CrossRef] [PubMed]
    [Google Scholar]
  31. Engelstädter J. . ( 2008; ). Muller’s ratchet and the degeneration of Y chromosomes: a simulation study. . Genetics 180:, 957–967. [CrossRef] [PubMed]
    [Google Scholar]
  32. Escarmís C. , Dávila M. , Charpentier N. , Bracho A. , Moya A. , Domingo E. . ( 1996; ). Genetic lesions associated with Muller’s ratchet in an RNA virus. . J Mol Biol 264:, 255–267. [CrossRef] [PubMed]
    [Google Scholar]
  33. Escarmís C. , Lázaro E. , Manrubia S. C. . ( 2006; ). Population bottlenecks in quasispecies dynamics. . Curr Top Microbiol Immunol 299:, 141–170. [CrossRef] [PubMed]
    [Google Scholar]
  34. Escarmís C. , Perales C. , Domingo E. . ( 2009; ). Biological effect of Muller’s ratchet: distant capsid site can affect picornavirus protein processing. . J Virol 83:, 6748–6756. [CrossRef] [PubMed]
    [Google Scholar]
  35. Felsenstein J. . ( 1974; ). The evolutionary advantage of recombination. . Genetics 78:, 737–756.[PubMed]
    [Google Scholar]
  36. Feng D. F. , Johnson M. S. , Doolittle R. F. . ( 1985; ). Aligning amino acid sequences: comparison of commonly used methods. . J Mol Evol 21:, 112–125. [CrossRef] [PubMed]
    [Google Scholar]
  37. Firth C. , Kitchen A. , Shapiro B. , Suchard M. A. , Holmes E. C. , Rambaut A. . ( 2010; ). Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses. . Mol Biol Evol 27:, 2038–2051. [CrossRef] [PubMed]
    [Google Scholar]
  38. Foy B. D. , Myles K. M. , Pierro D. J. , Sanchez-Vargas I. , Uhlírová M. , Jindra M. , Beaty B. J. , Olson K. E. . ( 2004; ). Development of a new Sindbis virus transducing system and its characterization in three Culicine mosquitoes and two Lepidopteran species. . Insect Mol Biol 13:, 89–100. [CrossRef] [PubMed]
    [Google Scholar]
  39. Goel M. K. , Khanna P. , Kishore J. . ( 2010; ). Understanding survival analysis: Kaplan–Meier estimate. . Int J Ayurveda Res 1:, 274–278. [CrossRef] [PubMed]
    [Google Scholar]
  40. Gómez-Sebastián S. , Tabarés E. . ( 2004; ). Negative regulation of herpes simplex virus type 1 ICP4 promoter by IE180 protein of pseudorabies virus. . J Gen Virol 85:, 2125–2130. [CrossRef] [PubMed]
    [Google Scholar]
  41. Haaland R. E. , Hawkins P. A. , Salazar-Gonzalez J. , Johnson A. , Tichacek A. , Karita E. , Manigart O. , Mulenga J. , Keele B. F. . & other authors ( 2009; ). Inflammatory genital infections mitigate a severe genetic bottleneck in heterosexual transmission of subtype A and C HIV-1. . PLoS Pathog 5:, e1000274. [CrossRef] [PubMed]
    [Google Scholar]
  42. Henikoff S. , Henikoff J. G. . ( 1992; ). Amino acid substitution matrices from protein blocks. . Proc Natl Acad Sci U S A 89:, 10915–10919. [CrossRef] [PubMed]
    [Google Scholar]
  43. Herrera M. , García-Arriaza J. , Pariente N. , Escarmís C. , Domingo E. . ( 2007; ). Molecular basis for a lack of correlation between viral fitness and cell killing capacity. . PLoS Pathog 3:, e53. [CrossRef] [PubMed]
    [Google Scholar]
  44. Hwang Y. T. , Liu B. Y. , Coen D. M. , Hwang C. B. . ( 1997; ). Effects of mutations in the Exo III motif of the herpes simplex virus DNA polymerase gene on enzyme activities, viral replication, and replication fidelity. . J Virol 71:, 7791–7798.[PubMed]
    [Google Scholar]
  45. Hwang Y. T. , Zuccola H. J. , Lu Q. , Hwang C. B. . ( 2004; ). A point mutation within conserved region VI of herpes simplex virus type 1 DNA polymerase confers altered drug sensitivity and enhances replication fidelity. . J Virol 78:, 650–657. [CrossRef] [PubMed]
    [Google Scholar]
  46. Lázaro E. , Escarmís C. , Pérez-Mercader J. , Manrubia S. C. , Domingo E. . ( 2003; ). Resistance of virus to extinction on bottleneck passages: study of a decaying and fluctuating pattern of fitness loss. . Proc Natl Acad Sci U S A 100:, 10830–10835. [CrossRef] [PubMed]
    [Google Scholar]
  47. Loewe L. . ( 2006; ). Quantifying the genomic decay paradox due to Muller’s ratchet in human mitochondrial DNA. . Genet Res 87:, 133–159. [CrossRef] [PubMed]
    [Google Scholar]
  48. Maynard Smith J. . ( 1976; ). The Evolution of Sex. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  49. McGeoch D. J. , Davison A. J. , Dolan A. , Gatherer D. , Sevilla-Reyes E. E. . ( 2008; ). Molecular Evolution of the Herpesvirales. . In Origen and Evolution and Viruses, , 2nd edn., pp. 447–475. Edited by Domingo E. , Parrish C. R. , Holland J. J. . . Amsterdam:: Academic Press, Elsevier;. [CrossRef]
    [Google Scholar]
  50. Moran N. A. . ( 1996; ). Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. . Proc Natl Acad Sci U S A 93:, 2873–2878. [CrossRef] [PubMed]
    [Google Scholar]
  51. Muller H. J. . ( 1932; ). Some genetic aspects of sex. . The American Naturalist 66:, 118–138.[CrossRef]
    [Google Scholar]
  52. Muller H. J. . ( 1964; ). The relation of recombination to mutational advance. . Mutat Res 106:, 2–9.[PubMed] [CrossRef]
    [Google Scholar]
  53. Nájera I. , Holguín A. , Quiñones-Mateu M. E. , Muñoz-Fernández M. A. , Nájera R. , López-Galíndez C. , Domingo E. . ( 1995; ). Pol gene quasispecies of human immunodeficiency virus: mutations associated with drug resistance in virus from patients undergoing no drug therapy. . J Virol 69:, 23–31.[PubMed]
    [Google Scholar]
  54. Novella I. S. . ( 2004; ). Negative effect of genetic bottlenecks on the adaptability of vesicular stomatitis virus. . J Mol Biol 336:, 61–67. [CrossRef] [PubMed]
    [Google Scholar]
  55. Novella I. S. , Ebendick-Corpus B. E. . ( 2004; ). Molecular basis of fitness loss and fitness recovery in vesicular stomatitis virus. . J Mol Biol 342:, 1423–1430. [CrossRef] [PubMed]
    [Google Scholar]
  56. Nowak M. , Schuster P. . ( 1989; ). Error thresholds of replication in finite populations mutation frequencies and the onset of Muller’s ratchet. . J Theor Biol 137:, 375–395. [CrossRef] [PubMed]
    [Google Scholar]
  57. Ochoa G. . ( 2006; ). Error thresholds in genetic algorithms. . Evol Comput 14:, 157–182. [CrossRef] [PubMed]
    [Google Scholar]
  58. Pardeiro M. , Cuenca-Estrella M. , Fernández-Clúa M. A. , Santos-O’Connor F. , Tabarés E. , Gadea I. . ( 2004; ). Characterisation of penciclovir resistant acyclovir sensitive herpes simplex virus type 2 isolated from an AIDS patient. . J Med Virol 73:, 60–64. [CrossRef] [PubMed]
    [Google Scholar]
  59. Pariente N. , Sierra S. , Lowenstein P. R. , Domingo E. . ( 2001; ). Efficient virus extinction by combinations of a mutagen and antiviral inhibitors. . J Virol 75:, 9723–9730. [CrossRef] [PubMed]
    [Google Scholar]
  60. Parris D. S. , Harrington J. E. . ( 1982; ). Herpes simplex virus variants restraint to high concentrations of acyclovir exist in clinical isolates. . Antimicrob Agents Chemother 22:, 71–77. [CrossRef] [PubMed]
    [Google Scholar]
  61. Pelosi E. , Rozenberg F. , Coen D. M. , Tyler K. L. . ( 1998; ). A herpes simplex virus DNA polymerase mutation that specifically attenuates neurovirulence in mice. . Virology 252:, 364–372. [CrossRef] [PubMed]
    [Google Scholar]
  62. Pfeiffer J. K. , Kirkegaard K. . ( 2005; ). Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice. . PLoS Pathog 1:, e11. [CrossRef] [PubMed]
    [Google Scholar]
  63. Quer J. , Esteban J. I. , Cos J. , Sauleda S. , Ocaña L. , Martell M. , Otero T. , Cubero M. , Palou E. . & other authors ( 2005; ). Effect of bottlenecking on evolution of the nonstructural protein 3 gene of hepatitis C virus during sexually transmitted acute resolving infection. . J Virol 79:, 15131–15141. [CrossRef] [PubMed]
    [Google Scholar]
  64. Quiñones-Mateu M. E. , Arts E. J. . ( 2006; ). Virus fitness: concept, quantification, and application to HIV population dynamics. . Curr Top Microbiol Immunol 299:, 83–140. [CrossRef] [PubMed]
    [Google Scholar]
  65. Reed J. H. , Muench H. . ( 1938; ). A simple method of estimating fifty percent endpoints. . Am J Hyg 27:, 493–497.
    [Google Scholar]
  66. Renzette N. , Bhattacharjee B. , Jensen J. D. , Gibson L. , Kowalik T. F. . ( 2011; ). Extensive genome-wide variability of human cytomegalovirus in congenitally infected infants. . PLoS Pathog 7:, e1001344. [CrossRef] [PubMed]
    [Google Scholar]
  67. Roizman B. , Knipe D. M. , Whitley R. J. . ( 2007; ). Herpes simplex viruses. . In Fields Virology, , 5th edn., pp. 2501–2601. Edited by Knipe D. M. , Howley P. M. . . Philadelphia:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  68. Sanjuán R. , Nebot M. R. , Chirico N. , Mansky L. M. , Belshaw R. . ( 2010; ). Viral mutation rates. . J Virol 84:, 9733–9748. [CrossRef] [PubMed]
    [Google Scholar]
  69. Sarisky R. T. , Nguyen T. T. , Duffy K. E. , Wittrock R. J. , Leary J. J. . ( 2000; ). Difference in incidence of spontaneous mutations between herpes simplex virus types 1 and 2. . Antimicrob Agents Chemother 44:, 1524–1529. [CrossRef] [PubMed]
    [Google Scholar]
  70. Sarisky R. T. , Quail M. R. , Clark P. E. , Nguyen T. T. , Halsey W. S. , Wittrock R. J. , O’Leary Bartus J. , Van Horn M. M. , Sathe G. M. . & other authors ( 2001; ). Characterization of herpes simplex viruses selected in culture for resistance to penciclovir or acyclovir. . J Virol 75:, 1761–1769. [CrossRef] [PubMed]
    [Google Scholar]
  71. Smith D. B. , Inglis S. C. . ( 1987; ). The mutation rate and variability of eukaryotic viruses: an analytical review. . J Gen Virol 68:, 2729–2740. [CrossRef] [PubMed]
    [Google Scholar]
  72. Smith D. R. , Adams A. P. , Kenney J. L. , Wang E. , Weaver S. C. . ( 2008; ). Venezuelan equine encephalitis virus in the mosquito vector Aedes taeniorhynchus: infection initiated by a small number of susceptible epithelial cells and a population bottleneck. . Virology 372:, 176–186. [CrossRef] [PubMed]
    [Google Scholar]
  73. Sukla S. , Biswas S. , Birkmann A. , Lischka P. , Ruebsamen-Schaeff H. , Zimmermann H. , Field H. J. . ( 2010; ). Effects of therapy using a helicase-primase inhibitor (HPI) in mice infected with deliberate mixtures of wild-type HSV-1 and an HPI-resistant UL5 mutant. . Antiviral Res 87:, 67–73. [CrossRef] [PubMed]
    [Google Scholar]
  74. Szpara M. L. , Parsons L. , Enquist L. W. . ( 2010; ). Sequence variability in clinical and laboratory isolates of herpes simplex virus 1 reveals new mutations. . J Virol 84:, 5303–5313. [CrossRef] [PubMed]
    [Google Scholar]
  75. Tian W. , Hwang Y. T. , Lu Q. , Hwang C. B. . ( 2009; ). Finger domain mutation affects enzyme activity, DNA replication efficiency, and fidelity of an exonuclease-deficient DNA polymerase of herpes simplex virus type 1. . J Virol 83:, 7194–7201. [CrossRef] [PubMed]
    [Google Scholar]
  76. Vignuzzi M. , Andino R. . ( 2010; ). Biological Implications of Picornavirus Fidelity Mutants. Washington:: American Society for Microbiology;.
    [Google Scholar]
  77. Vignuzzi M. , Stone J. K. , Arnold J. J. , Cameron C. E. , Andino R. . ( 2006; ). Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. . Nature 439:, 344–348. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.044685-0
Loading
/content/journal/jgv/10.1099/vir.0.044685-0
Loading

Data & Media loading...

Supplements

Supplementary tables 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error