1887

Abstract

Tat has a pivotal role in human and simian immunodeficiency virus (HIV and SIV) replication because it stimulates transcription by binding to the -activator response (TAR) element. In addition, several other Tat functions have been proposed. Most studies have focused on HIV-1 Tat and much less is known about SIV Tat. An SIVmac239 variant was constructed previously in which the Tat–TAR transcription mechanism is functionally replaced by the doxycycline-inducible Tet-On gene expression mechanism (SIV-rtTA). In this study, SIV-rtTA variants were used to analyse the functions of SIV Tat. It was shown that Tat-minus SIV-rtTA variants replicated efficiently in PM1 T-cells, ruling out an additional essential Tat function. Nevertheless, replication was suboptimal in other cells, and evolutionary pressure to repair Tat expression was documented. It was demonstrated that SIV-rtTA required Tat for optimal gene expression, despite the absence of the Tat–TAR axis. This Tat effect was lost upon replacement of the long terminal repeat promoter region by a non-related promoter. These results indicate that Tat can activate SIV transcription via TAR RNA and U3 DNA elements but has no other essential function in replication in cultured cells. The experiments were limited to cell lines and PBMCs, and did not exclude an accessory Tat function under specific conditions or .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.044511-0
2012-10-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/10/2279.html?itemId=/content/journal/jgv/10.1099/vir.0.044511-0&mimeType=html&fmt=ahah

References

  1. Apolloni A., Meredith L. W., Suhrbier A., Kiernan R., Harrich D.. ( 2007;). The HIV-1 Tat protein stimulates reverse transcription in vitro. . Curr HIV Res 5:, 473–483. [CrossRef][PubMed]
    [Google Scholar]
  2. Bannwarth S., Gatignol A.. ( 2005;). HIV-1 TAR RNA: the target of molecular interactions between the virus and its host. . Curr HIV Res 3:, 61–71. [CrossRef][PubMed]
    [Google Scholar]
  3. Bennasser Y., Jeang K.-T.. ( 2006;). HIV-1 Tat interaction with Dicer: requirement for RNA. . Retrovirology 3:, 95. [CrossRef][PubMed]
    [Google Scholar]
  4. Bennasser Y., Le S.-Y., Benkirane M., Jeang K.-T.. ( 2005;). Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. . Immunity 22:, 607–619. [CrossRef][PubMed]
    [Google Scholar]
  5. Berchtold S., Ries J., Hornung U., Aepinus C.. ( 1994;). Exchange of functional domains between Rev proteins of HIV-1 and SIVmac239 results in a dominant negative phenotype. . Virology 204:, 436–441. [CrossRef][PubMed]
    [Google Scholar]
  6. Berkhout B., Gatignol A., Silver J., Jeang K.-T.. ( 1990;). Efficient trans-activation by the HIV-2 Tat protein requires a duplicated TAR RNA structure. . Nucleic Acids Res 18:, 1839–1846. [CrossRef][PubMed]
    [Google Scholar]
  7. Bieniasz P. D., Grdina T. A., Bogerd H. P., Cullen B. R.. ( 1999;). Recruitment of cyclin T1/P-TEFb to an HIV type 1 long terminal repeat promoter proximal RNA target is both necessary and sufficient for full activation of transcription. . Proc Natl Acad Sci U S A 96:, 7791–7796. [CrossRef][PubMed]
    [Google Scholar]
  8. Braddock M., Thorburn A. M., Chambers A., Elliott G. D., Anderson G. J., Kingsman A. J., Kingsman S. M.. ( 1990;). A nuclear translational block imposed by the HIV-1 U3 region is relieved by the Tat–TAR interaction. . Cell 62:, 1123–1133. [CrossRef][PubMed]
    [Google Scholar]
  9. Braddock M., Powell R., Blanchard A. D., Kingsman A. J., Kingsman S. M.. ( 1993;). HIV-1 TAR RNA-binding proteins control TAT activation of translation in Xenopus oocytes. . FASEB J 7:, 214–222.[PubMed]
    [Google Scholar]
  10. Brady J., Kashanchi F.. ( 2005;). Tat gets the “green” light on transcription initiation. . Retrovirology 2:, 69. [CrossRef][PubMed]
    [Google Scholar]
  11. Centlivre M., Klaver B., Berkhout B., Das A. T.. ( 2008;). Functional analysis of the complex trans-activating response element RNA structure in simian immunodeficiency virus. . J Virol 82:, 9171–9178. [CrossRef][PubMed]
    [Google Scholar]
  12. Charnay N., Ivanyi-Nagy R., Soto-Rifo R., Ohlmann T., López-Lastra M., Darlix J. L.. ( 2009;). Mechanism of HIV-1 Tat RNA translation and its activation by the Tat protein. . Retrovirology 6:, 74. [CrossRef][PubMed]
    [Google Scholar]
  13. Chen Z., Gettie A., Ho D. D., Marx P. A.. ( 1998;). Primary SIVsm isolates use the CCR5 coreceptor from sooty mangabeys naturally infected in West Africa: a comparison of coreceptor usage of primary SIVsm, HIV-2, and SIVmac. . Virology 246:, 113–124. [CrossRef][PubMed]
    [Google Scholar]
  14. Chiu Y.-L., Coronel E., Ho C. K., Shuman S., Rana T. M.. ( 2001;). HIV-1 Tat protein interacts with mammalian capping enzyme and stimulates capping of TAR RNA. . J Biol Chem 276:, 12959–12966. [CrossRef][PubMed]
    [Google Scholar]
  15. Chiu Y.-L., Ho C. K., Saha N., Schwer B., Shuman S., Rana T. M.. ( 2002;). Tat stimulates cotranscriptional capping of HIV mRNA. . Mol Cell 10:, 585–597. [CrossRef][PubMed]
    [Google Scholar]
  16. Das A. T., Verhoef K., Berkhout B.. ( 2004a;). A conditionally replicating virus as a novel approach toward an HIV vaccine. . Methods Enzymol 388:, 359–379. [CrossRef][PubMed]
    [Google Scholar]
  17. Das A. T., Zhou X., Vink M., Klaver B., Verhoef K., Marzio G., Berkhout B.. ( 2004b;). Viral evolution as a tool to improve the tetracycline-regulated gene expression system. . J Biol Chem 279:, 18776–18782. [CrossRef][PubMed]
    [Google Scholar]
  18. Das A. T., Klaver B., Harwig A., Vink M., Ooms M., Centlivre M., Berkhout B.. ( 2007a;). Construction of a doxycycline-dependent simian immunodeficiency virus reveals a nontranscriptional function of Tat in viral replication. . J Virol 81:, 11159–11169. [CrossRef][PubMed]
    [Google Scholar]
  19. Das A. T., Harwig A., Vrolijk M. M., Berkhout B.. ( 2007b;). The TAR hairpin of human immunodeficiency virus type 1 can be deleted when not required for Tat-mediated activation of transcription. . J Virol 81:, 7742–7748. [CrossRef][PubMed]
    [Google Scholar]
  20. Das A. T., Klaver B., Centlivre M., Harwig A., Ooms M., Page M., Almond N., Yuan F., Piatak M. Jr. & other authors ( 2008;). Optimization of the doxycycline-dependent simian immunodeficiency virus through in vitro evolution. . Retrovirology 5:, 44. [CrossRef][PubMed]
    [Google Scholar]
  21. Das A. T., Harwig A., Berkhout B.. ( 2011;). The HIV-1 Tat protein has a versatile role in activating viral transcription. . J Virol 85:, 9506–9516. [CrossRef][PubMed]
    [Google Scholar]
  22. Easley R., Van Duyne R., Coley W., Guendel I., Dadgar S., Kehn-Hall K., Kashanchi F.. ( 2010;). Chromatin dynamics associated with HIV-1 Tat-activated transcription. . Biochim Biophys Acta 1799:, 275–285. [CrossRef][PubMed]
    [Google Scholar]
  23. Gatignol A.. ( 2007;). Transcription of HIV: Tat and cellular chromatin. . Adv Pharmacol 55:, 137–159. [CrossRef][PubMed]
    [Google Scholar]
  24. Gautier V. W., Gu L., O’Donoghue N., Pennington S., Sheehy N., Hall W. W.. ( 2009;). In vitro nuclear interactome of the HIV-1 Tat protein. . Retrovirology 6:, 47. [CrossRef][PubMed]
    [Google Scholar]
  25. Gibbs J. S., Regier D. A., Desrosiers R. C.. ( 1994;). Construction and in vitro properties of SIVmac mutants with deletions in “nonessential” genes. . AIDS Res Hum Retroviruses 10:, 607–616. [CrossRef][PubMed]
    [Google Scholar]
  26. Gibbs J. S., Lackner A. A., Lang S. M., Simon M. A., Sehgal P. K., Daniel M. D., Desrosiers R. C.. ( 1995;). Progression to AIDS in the absence of a gene for vpr or vpx. . J Virol 69:, 2378–2383.[PubMed]
    [Google Scholar]
  27. Haasnoot J., de Vries W., Geutjes E. J., Prins M., de Haan P., Berkhout B.. ( 2007;). The Ebola virus VP35 protein is a suppressor of RNA silencing. . PLoS Pathog 3:, e86. [CrossRef][PubMed]
    [Google Scholar]
  28. Harrich D., Ulich C., García-Martínez L. F., Gaynor R. B.. ( 1997;). Tat is required for efficient HIV-1 reverse transcription. . EMBO J 16:, 1224–1235. [CrossRef][PubMed]
    [Google Scholar]
  29. Hoch J., Lang S. M., Weeger M., Stahl-Hennig C., Coulibaly C., Dittmer U., Hunsmann G., Fuchs D., Müller J.. & other authors ( 1995;). vpr deletion mutant of simian immunodeficiency virus induces AIDS in rhesus monkeys. . J Virol 69:, 4807–4813.[PubMed]
    [Google Scholar]
  30. Ilyinskii P. O., Desrosiers R. C.. ( 1996;). Efficient transcription and replication of simian immunodeficiency virus in the absence of NF-κB and Sp1 binding elements. . J Virol 70:, 3118–3126.[PubMed]
    [Google Scholar]
  31. Jablonski J. A., Amelio A. L., Giacca M., Caputi M.. ( 2010;). The transcriptional transactivator Tat selectively regulates viral splicing. . Nucleic Acids Res 38:, 1249–1260. [CrossRef][PubMed]
    [Google Scholar]
  32. Kameoka M., Rong L., Götte M., Liang C., Russell R. S., Wainberg M. A.. ( 2001;). Role for human immunodeficiency virus type 1 Tat protein in suppression of viral reverse transcriptase activity during late stages of viral replication. . J Virol 75:, 2675–2683. [CrossRef][PubMed]
    [Google Scholar]
  33. Kameoka M., Morgan M., Binette M., Russell R. S., Rong L., Guo X., Mouland A., Kleiman L., Liang C., Wainberg M. A.. ( 2002;). The Tat protein of human immunodeficiency virus type 1 (HIV-1) can promote placement of tRNA primer onto viral RNA and suppress later DNA polymerization in HIV-1 reverse transcription. . J Virol 76:, 3637–3645. [CrossRef][PubMed]
    [Google Scholar]
  34. Lin J., Cullen B. R.. ( 2007;). Analysis of the interaction of primate retroviruses with the human RNA interference machinery. . J Virol 81:, 12218–12226. [CrossRef][PubMed]
    [Google Scholar]
  35. Lusso P., Cocchi F., Balotta C., Markham P. D., Louie A., Farci P., Pal R., Gallo R. C., Reitz M. S. Jr. ( 1995;). Growth of macrophage-tropic and primary human immunodeficiency virus type 1 (HIV-1) isolates in a unique CD4+ T-cell clone (PM1): failure to downregulate CD4 and to interfere with cell-line-tropic HIV-1. . J Virol 69:, 3712–3720.[PubMed]
    [Google Scholar]
  36. Maudru T., Peden K. W.. ( 1998;). Adaptation of the fluorogenic 5′-nuclease chemistry to a PCR-based reverse transcriptase assay. . Biotechniques 25:, 972–975.[PubMed]
    [Google Scholar]
  37. Mikaelian I., Sergeant A.. ( 1992;). A general and fast method to generate multiple site directed mutations. . Nucleic Acids Res 20:, 376. [CrossRef][PubMed]
    [Google Scholar]
  38. Mueller S. M., Lang S. M.. ( 2002;). The first HxRxG motif in simian immunodeficiency virus mac239 Vpr is crucial for G2/M cell cycle arrest. . J Virol 76:, 11704–11709. [CrossRef][PubMed]
    [Google Scholar]
  39. Parada C. A., Roeder R. G.. ( 1996;). Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. . Nature 384:, 375–378. [CrossRef][PubMed]
    [Google Scholar]
  40. Pöhlmann S., Flöss S., Ilyinskii P. O., Stamminger T., Kirchhoff F.. ( 1998;). Sequences just upstream of the simian immunodeficiency virus core enhancer allow efficient replication in the absence of NF-κB and Sp1 binding elements. . J Virol 72:, 5589–5598.[PubMed]
    [Google Scholar]
  41. Raha T., Cheng S. W. G., Green M. R.. ( 2005;). HIV-1 Tat stimulates transcription complex assembly through recruitment of TBP in the absence of TAFs. . PLoS Biol 3:, e44. [CrossRef][PubMed]
    [Google Scholar]
  42. Richter S., Ping Y.-H., Rana T. M.. ( 2002;). TAR RNA loop: a scaffold for the assembly of a regulatory switch in HIV replication. . Proc Natl Acad Sci U S A 99:, 7928–7933. [CrossRef][PubMed]
    [Google Scholar]
  43. Romani B., Engelbrecht S., Glashoff R. H.. ( 2010;). Functions of Tat: the versatile protein of human immunodeficiency virus type 1. . J Gen Virol 91:, 1–12. [CrossRef][PubMed]
    [Google Scholar]
  44. Ruijter J. M., Thygesen H. H., Schoneveld O. J. L. M., Das A. T., Berkhout B., Lamers W. H.. ( 2006;). Factor correction as a tool to eliminate between-session variation in replicate experiments: application to molecular biology and retrovirology. . Retrovirology 3:, 2. [CrossRef][PubMed]
    [Google Scholar]
  45. Sanghvi V. R., Steel L. F.. ( 2011;). A re-examination of global suppression of RNA interference by HIV-1. . PLoS ONE 6:, e17246. [CrossRef][PubMed]
    [Google Scholar]
  46. Schnettler E., de Vries W., Hemmes H., Haasnoot J., Kormelink R., Goldbach R., Berkhout B.. ( 2009;). The NS3 protein of rice hoja blanca virus complements the RNAi suppressor function of HIV-1 Tat. . EMBO Rep 10:, 258–263. [CrossRef][PubMed]
    [Google Scholar]
  47. SenGupta D. N., Berkhout B., Gatignol A., Zhou A. M., Silverman R. H.. ( 1990;). Direct evidence for translational regulation by leader RNA and Tat protein of human immunodeficiency virus type 1. . Proc Natl Acad Sci U S A 87:, 7492–7496. [CrossRef][PubMed]
    [Google Scholar]
  48. Verhoef K., Koper M., Berkhout B.. ( 1997;). Determination of the minimal amount of Tat activity required for human immunodeficiency virus type 1 replication. . Virology 237:, 228–236. [CrossRef][PubMed]
    [Google Scholar]
  49. Verhoef K., Marzio G., Hillen W., Bujard H., Berkhout B.. ( 2001;). Strict control of human immunodeficiency virus type 1 replication by a genetic switch: Tet for Tat. . J Virol 75:, 979–987. [CrossRef][PubMed]
    [Google Scholar]
  50. Wei P., Garber M. E., Fang S. M., Fischer W. H., Jones K. A.. ( 1998;). A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. . Cell 92:, 451–462. [CrossRef][PubMed]
    [Google Scholar]
  51. Zhou M., Deng L., Kashanchi F., Brady J. N., Shatkin A. J., Kumar A.. ( 2003;). The Tat/TAR-dependent phosphorylation of RNA polymerase II C-terminal domain stimulates cotranscriptional capping of HIV-1 mRNA. . Proc Natl Acad Sci U S A 100:, 12666–12671. [CrossRef][PubMed]
    [Google Scholar]
  52. Zhou X., Vink M., Klaver B., Berkhout B., Das A. T.. ( 2006;). Optimization of the Tet-On system for regulated gene expression through viral evolution. . Gene Ther 13:, 1382–1390. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.044511-0
Loading
/content/journal/jgv/10.1099/vir.0.044511-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error