1887

Abstract

It is clear that a number of host-cell factors facilitate virus replication and, conversely, a number of other factors possess inherent antiviral activity. Research, particularly over the last decade or so, has revealed that there is a complex inter-relationship between viral infection and the host-cell DNA-damage response and repair pathways. There is now a realization that viruses can selectively activate and/or repress specific components of these host-cell pathways in a temporally coordinated manner, in order to promote virus replication. Thus, some viruses, such as simian virus 40, require active DNA-repair pathways for optimal virus replication, whereas others, such as adenovirus, go to considerable lengths to inactivate some pathways. Although there is ever-increasing molecular insight into how viruses interact with host-cell damage pathways, the precise molecular roles of these pathways in virus life cycles is not well understood. The object of this review is to consider how DNA viruses have evolved to manage the function of three principal DNA damage-response pathways controlled by the three phosphoinositide 3-kinase (PI3K)-related protein kinases ATM, ATR and DNA-PK and to explore further how virus interactions with these pathways promote virus replication.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.044412-0
2012-10-01
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/10/2076.html?itemId=/content/journal/jgv/10.1099/vir.0.044412-0&mimeType=html&fmt=ahah

References

  1. Ali S. H., Kasper J. S., Arai T., DeCaprio J. A. 2004; Cul7/p185/p193 binding to simian virus 40 large T antigen has a role in cellular transformation. J Virol 78:2749–2757 [View Article][PubMed]
    [Google Scholar]
  2. Araujo F. D., Stracker T. H., Carson C. T., Lee D. V., Weitzman M. D. 2005; Adenovirus type 5 E4orf3 protein targets the Mre11 complex to cytoplasmic aggresomes. J Virol 79:11382–11391 [View Article][PubMed]
    [Google Scholar]
  3. Bailey S. G., Verrall E., Schelcher C., Rhie A., Doherty A. J., Sinclair A. J. 2009; Functional interaction between Epstein-Barr virus replication protein Zta and host DNA damage response protein 53BP1. J Virol 83:11116–11122 [View Article][PubMed]
    [Google Scholar]
  4. Baker A., Rohleder K. J., Hanakahi L. A., Ketner G. 2007; Adenovirus E4 34k and E1b 55k oncoproteins target host DNA ligase IV for proteasomal degradation. J Virol 81:7034–7040 [View Article][PubMed]
    [Google Scholar]
  5. Balasubramanian N., Bai P., Buchek G., Korza G., Weller S. K. 2010; Physical interaction between the herpes simplex virus type 1 exonuclease, UL12, and the DNA double-strand break-sensing MRN complex. J Virol 84:12504–12514 [View Article][PubMed]
    [Google Scholar]
  6. Banerjee N. S., Wang H. K., Broker T. R., Chow L. T. 2011; Human papillomavirus (HPV) E7 induces prolonged G2 following S phase reentry in differentiated human keratinocytes. J Biol Chem 286:15473–15482 [View Article][PubMed]
    [Google Scholar]
  7. Becker S. A., Lee T. H., Butel J. S., Slagle B. L. 1998; Hepatitis B virus X protein interferes with cellular DNA repair. J Virol 72:266–272[PubMed]
    [Google Scholar]
  8. Bergametti F., Sitterlin D., Transy C. 2002; Turnover of hepatitis B virus X protein is regulated by damaged DNA-binding complex. J Virol 76:6495–6501 [View Article][PubMed]
    [Google Scholar]
  9. Berk A. J. 2005; Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 24:7673–7685 [View Article][PubMed]
    [Google Scholar]
  10. Berthet C., Raj K., Saudan P., Beard P. 2005; How adeno-associated virus Rep78 protein arrests cells completely in S phase. Proc Natl Acad Sci U S A 102:13634–13639 [View Article][PubMed]
    [Google Scholar]
  11. Blackford A. N., Bruton R. K., Dirlik O., Stewart G. S., Taylor A. M., Dobner T., Grand R. J., Turnell A. S. 2008; A role for E1B-AP5 in ATR signaling pathways during adenovirus infection. J Virol 82:7640–7652 [View Article][PubMed]
    [Google Scholar]
  12. Blackford A. N., Patel R. N., Forrester N. A., Theil K., Groitl P., Stewart G. S., Taylor A. M. R., Morgan I. M., Dobner T. other authors 2010; Adenovirus 12 E4orf6 inhibits ATR activation by promoting TOPBP1 degradation. Proc Natl Acad Sci U S A 107:12251–12256 [View Article][PubMed]
    [Google Scholar]
  13. Blanchette P., Cheng C. Y., Yan Q., Ketner G., Ornelles D. A., Dobner T., Conaway R. C., Conaway J. W., Branton P. E. 2004; Both BC-box motifs of adenovirus protein E4orf6 are required to efficiently assemble an E3 ligase complex that degrades p53. Mol Cell Biol 24:9619–9629 [View Article][PubMed]
    [Google Scholar]
  14. Boichuk S., Hu L., Hein J., Gjoerup O. V. 2010; Multiple DNA damage signaling and repair pathways deregulated by simian virus 40 large T antigen. J Virol 84:8007–8020 [View Article][PubMed]
    [Google Scholar]
  15. Boyer J., Rohleder K., Ketner G. 1999; Adenovirus E4 34k and E4 11k inhibit double strand break repair and are physically associated with the cellular DNA-dependent protein kinase. Virology 263:307–312 [View Article][PubMed]
    [Google Scholar]
  16. Burma S., Chen D. J. 2004; Role of DNA-PK in the cellular response to DNA double-strand breaks. DNA Repair (Amst) 3:909–918 [View Article][PubMed]
    [Google Scholar]
  17. Capovilla A., Carmona S., Arbuthnot P. 1997; Hepatitis B virus X-protein binds damaged DNA and sensitizes liver cells to ultraviolet irradiation. Biochem Biophys Res Commun 232:255–260 [View Article][PubMed]
    [Google Scholar]
  18. Carson C. T., Schwartz R. A., Stracker T. H., Lilley C. E., Lee D. V., Weitzman M. D. 2003; The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO J 22:6610–6620 [View Article][PubMed]
    [Google Scholar]
  19. Carson C. T., Orazio N. I., Lee D. V., Suh J., Bekker-Jensen S., Araujo F. D., Lakdawala S. S., Lilley C. E., Bartek J. other authors 2009; Mislocalization of the MRN complex prevents ATR signaling during adenovirus infection. EMBO J 28:652–662 [View Article][PubMed]
    [Google Scholar]
  20. Carvalho T., Seeler J. S., Ohman K., Jordan P., Pettersson U., Akusjärvi G., Carmo-Fonseca M., Dejean A. 1995; Targeting of adenovirus E1A and E4-ORF3 proteins to nuclear matrix-associated PML bodies. J Cell Biol 131:45–56 [View Article][PubMed]
    [Google Scholar]
  21. Castillo J. P., Frame F. M., Rogoff H. A., Pickering M. T., Yurochko A. D., Kowalik T. F. 2005; Human cytomegalovirus IE1-72 activates ataxia telangiectasia mutated kinase and a p53/p21-mediated growth arrest response. J Virol 79:11467–11475 [View Article][PubMed]
    [Google Scholar]
  22. Chaurushiya M. S., Weitzman M. D. 2009; Viral manipulation of DNA repair and cell cycle checkpoints. DNA Repair (Amst) 8:1166–1176 [View Article][PubMed]
    [Google Scholar]
  23. Chaurushiya M. S., Lilley C. E., Aslanian A., Meisenhelder J., Scott D. C., Landry S., Ticau S., Boutell C., Yates J. R. III other authors 2012; Viral E3 ubiquitin ligase-mediated degradation of a cellular E3: viral mimicry of a cellular phosphorylation mark targets the RNF8 FHA domain. Mol Cell 46:79–90 [View Article][PubMed]
    [Google Scholar]
  24. Chen Y. R., Liu M. T., Chang Y. T., Wu C. C., Hu C. Y., Chen J. Y. 2008; Epstein-Barr virus latent membrane protein 1 represses DNA repair through the PI3K/Akt/FOXO3a pathway in human epithelial cells. J Virol 82:8124–8137 [View Article][PubMed]
    [Google Scholar]
  25. Chen B., Simpson D. A., Zhou Y., Mitra A., Mitchell D. L., Cordeiro-Stone M., Kaufmann W. K. 2009; Human papilloma virus type16 E6 deregulates CHK1 and sensitizes human fibroblasts to environmental carcinogens independently of its effect on p53. Cell Cycle 8:1775–1787 [View Article][PubMed]
    [Google Scholar]
  26. Chen W., Hilton I. B., Staudt M. R., Burd C. E., Dittmer D. P. 2010; Distinct p53, p53: LANA, and LANA complexes in Kaposi’s sarcoma-associated herpes virus lymphomas. J Virol 84:3898–3908 [View Article][PubMed]
    [Google Scholar]
  27. Chenet-Monte C., Mohammad F., Celluzzi C. M., Schaffer P. A., Farber F. E. 1986; Herpes simplex virus gene products involved in the induction of chromosomal aberrations. Virus Res 6:245–260 [View Article][PubMed]
    [Google Scholar]
  28. Cheng J., DeCaprio J. A., Fluck M. M., Schaffhausen B. S. 2009; Cellular transformation by simian virus 40 and murine polyoma virus T antigens. Semin Cancer Biol 19:218–228 [View Article][PubMed]
    [Google Scholar]
  29. Cheng C. Y., Gilson T., Dallaire F., Ketner G., Branton P. E., Blanchette P. 2011; The E4orf6/E1B55K E3 ubiquitin ligase complexes of human adenoviruses exhibit heterogeneity in composition and substrate specificity. J Virol 85:765–775 [View Article][PubMed]
    [Google Scholar]
  30. Choudhuri T., Verma S. C., Lan K., Murakami M., Robertson E. S. 2007; The ATM/ATR signaling effector Chk2 is targeted by Epstein-Barr virus nuclear antigen 3C to release the G2/M cell cycle block. J Virol 81:6718–6730 [View Article][PubMed]
    [Google Scholar]
  31. Chow L. T., Broker T. R., Steinberg B. M. 2010; The natural history of human papillomavirus infections of the mucosal epithelia. APMIS 118:422–449 [View Article][PubMed]
    [Google Scholar]
  32. Cimprich K. A., Cortez D. 2008; ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9:616–627 [View Article][PubMed]
    [Google Scholar]
  33. Collaco R. F., Bevington J. M., Bhrigu V., Kalman-Maltese V., Trempe J. P. 2009; Adeno-associated virus and adenovirus coinfection induces a cellular DNA damage and repair response via redundant phosphatidylinositol 3-like kinase pathways. Virology 392:24–33 [View Article][PubMed]
    [Google Scholar]
  34. Dahl J., Jurczak A., Cheng L. A., Baker D. C., Benjamin T. L. 1998; Evidence of a role for phosphatidylinositol 3-kinase activation in the blocking of apoptosis by polyomavirus middle T antigen. J Virol 72:3221–3226[PubMed]
    [Google Scholar]
  35. Dahl J., You J., Benjamin T. L. 2005; Induction and utilization of an ATM signaling pathway by polyomavirus. J Virol 79:13007–13017 [View Article][PubMed]
    [Google Scholar]
  36. Dallaire F., Blanchette P., Groitl P., Dobner T., Branton P. E. 2009; Identification of integrin alpha3 as a new substrate of the adenovirus E4orf6/E1B 55-kilodalton E3 ubiquitin ligase complex. J Virol 83:5329–5338 [View Article][PubMed]
    [Google Scholar]
  37. Darbinyan A., Darbinian N., Safak M., Radhakrishnan S., Giordano A., Khalili K. 2002; Evidence for dysregulation of cell cycle by human polyomavirus, JCV, late auxiliary protein. Oncogene 21:5574–5581 [View Article][PubMed]
    [Google Scholar]
  38. Darbinyan A., Siddiqui K. M., Slonina D., Darbinian N., Amini S., White M. K., Khalili K. 2004; Role of JC virus agnoprotein in DNA repair. J Virol 78:8593–8600 [View Article][PubMed]
    [Google Scholar]
  39. Darbinyan A., White M. K., Akan S., Radhakrishnan S., Del Valle L., Amini S., Khalili K. 2007; Alterations of DNA damage repair pathways resulting from JCV infection. Virology 364:73–86 [View Article][PubMed]
    [Google Scholar]
  40. Derheimer F. A., Kastan M. B. 2010; Multiple roles of ATM in monitoring and maintaining DNA integrity. FEBS Lett 584:3675–3681 [View Article][PubMed]
    [Google Scholar]
  41. Dey D., Dahl J. H., Cho S., Benjamin T. L. 2002; Induction and bypass of p53 during productive infection by polyomavirus. J Virol 76:9526–9532 [View Article][PubMed]
    [Google Scholar]
  42. Dheekollu J., Deng Z., Wiedmer A., Weitzman M. D., Lieberman P. M. 2007; A role for MRE11, NBS1, and recombination junctions in replication and stable maintenance of EBV episomes. PLoS ONE 2:e1257 [View Article][PubMed]
    [Google Scholar]
  43. Doherty J., Freund R. 1997; Polyomavirus large T antigen overcomes p53 dependent growth arrest. Oncogene 14:1923–1931 [View Article][PubMed]
    [Google Scholar]
  44. Donaldson M. M., Boner W., Morgan I. M. 2007; TopBP1 regulates human papillomavirus type 16 E2 interaction with chromatin. J Virol 81:4338–4342 [View Article][PubMed]
    [Google Scholar]
  45. Dornreiter I., Erdile L. F., Gilbert I. U., von Winkler D., Kelly T. J., Fanning E. 1992; Interaction of DNA polymerase alpha-primase with cellular replication protein A and SV40 T antigen. EMBO J 11:769–776[PubMed]
    [Google Scholar]
  46. Doucas V., Ishov A. M., Romo A., Juguilon H., Weitzman M. D., Evans R. M., Maul G. G. 1996; Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. Genes Dev 10:196–207 [View Article][PubMed]
    [Google Scholar]
  47. Duensing S., Münger K. 2002; The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res 62:7075–7082[PubMed]
    [Google Scholar]
  48. E X., Pickering M. T., Debatis M., Castillo J., Lagadinos A., Wang S., Lu S., Kowalik T. F. 2011; An E2F1-mediated DNA damage response contributes to the replication of human cytomegalovirus. PLoS Pathog 7:e1001342[PubMed] [CrossRef]
    [Google Scholar]
  49. Evans J. D., Hearing P. 2005; Relocalization of the Mre11-Rad50-Nbs1 complex by the adenovirus E4 ORF3 protein is required for viral replication. J Virol 79:6207–6215 [View Article][PubMed]
    [Google Scholar]
  50. Everett R. D. 2000; ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays 22:761–770 [View Article][PubMed]
    [Google Scholar]
  51. Everett R. D., Freemont P., Saitoh H., Dasso M., Orr A., Kathoria M., Parkinson J. 1998; The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms. J Virol 72:6581–6591[PubMed]
    [Google Scholar]
  52. Fanning E., Zhao K. 2009; SV40 DNA replication: from the A gene to a nanomachine. Virology 384:352–359 [View Article][PubMed]
    [Google Scholar]
  53. Fanning E., Klimovich V., Nager A. R. 2006; A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res 34:4126–4137 [View Article][PubMed]
    [Google Scholar]
  54. Feederle R., Mehl-Lautscham A. M., Bannert H., Delecluse H. J. 2009a; The Epstein-Barr virus protein kinase BGLF4 and the exonuclease BGLF5 have opposite effects on the regulation of viral protein production. J Virol 83:10877–10891 [View Article][PubMed]
    [Google Scholar]
  55. Feederle R., Bannert H., Lips H., Müller-Lantzsch N., Delecluse H. J. 2009b; The Epstein-Barr virus alkaline exonuclease BGLF5 serves pleiotropic functions in virus replication. J Virol 83:4952–4962 [View Article][PubMed]
    [Google Scholar]
  56. Feitelson M. A., Zhu M., Duan L. X., London W. T. 1993; Hepatitis B x antigen and p53 are associated in vitro and in liver tissues from patients with primary hepatocellular carcinoma. Oncogene 8:1109–1117[PubMed]
    [Google Scholar]
  57. Flores E. R., Lambert P. F. 1997; Evidence for a switch in the mode of human papillomavirus type 16 DNA replication during the viral life cycle. J Virol 71:7167–7179[PubMed]
    [Google Scholar]
  58. Forrester N. A., Sedgwick G. G., Thomas A., Blackford A. N., Speiseder T., Dobner T., Byrd P. J., Stewart G. S., Turnell A. S., Grand R. J. 2011; Serotype-specific inactivation of the cellular DNA damage response during adenovirus infection. J Virol 85:2201–2211 [View Article][PubMed]
    [Google Scholar]
  59. Forrester N. A., Patel R. N., Speiseder T., Groitl P., Sedgwick G. G., Shimwell N. J., Seed R. I., Catnaigh P. Ó., McCabe C. J. other authors 2012; Adenovirus E4orf3 targets transcriptional intermediary factor 1γ for proteasome-dependent degradation during infection. J Virol 86:3167–3179 [View Article][PubMed]
    [Google Scholar]
  60. Fortunato E. A., Spector D. H. 2003; Viral induction of site-specific chromosome damage. Rev Med Virol 13:21–37 [View Article][PubMed]
    [Google Scholar]
  61. Fortunato E. A., McElroy A. K., Sanchez I., Spector D. H. 2000; Exploitation of cellular signaling and regulatory pathways by human cytomegalovirus. Trends Microbiol 8:111–119 [View Article][PubMed]
    [Google Scholar]
  62. Fradet-Turcotte A., Bergeron-Labrecque F., Moody C. A., Lehoux M., Laimins L. A., Archambault J. 2011; Nuclear accumulation of the papillomavirus E1 helicase blocks S-phase progression and triggers an ATM-dependent DNA damage response. J Virol 85:8996–9012 [View Article][PubMed]
    [Google Scholar]
  63. Fragkos M., Jurvansuu J., Beard P. 2009; H2AX is required for cell cycle arrest via the p53/p21 pathway. Mol Cell Biol 29:2828–2840 [View Article][PubMed]
    [Google Scholar]
  64. Friborg J. Jr, Kong W., Hottiger M. O., Nabel G. J. 1999; p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402:889–894[PubMed]
    [Google Scholar]
  65. Frisch S. M., Mymryk J. S. 2002; Adenovirus-5 E1A: paradox and paradigm. Nat Rev Mol Cell Biol 3:441–452 [View Article][PubMed]
    [Google Scholar]
  66. Gallimore P. H., Turnell A. S. 2001; Adenovirus E1A: remodelling the host cell, a life or death experience. Oncogene 20:7824–7835 [View Article][PubMed]
    [Google Scholar]
  67. Gaspar M., Shenk T. 2006; Human cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins. Proc Natl Acad Sci U S A 103:2821–2826 [View Article][PubMed]
    [Google Scholar]
  68. Geoffroy M. C., Salvetti A. 2005; Helper functions required for wild type and recombinant adeno-associated virus growth. Curr Gene Ther 5:265–271 [View Article][PubMed]
    [Google Scholar]
  69. Grand R. J., Grant M. L., Gallimore P. H. 1994; Enhanced expression of p53 in human cells infected with mutant adenoviruses. Virology 203:229–240 [View Article][PubMed]
    [Google Scholar]
  70. Gregory D. A., Bachenheimer S. L. 2008; Characterization of mre11 loss following HSV-1 infection. Virology 373:124–136 [View Article][PubMed]
    [Google Scholar]
  71. Gruhne B., Sompallae R., Masucci M. G. 2009a; Three Epstein–Barr virus latency proteins independently promote genomic instability by inducing DNA damage, inhibiting DNA repair and inactivating cell cycle checkpoints. Oncogene 28:3997–4008 [View Article][PubMed]
    [Google Scholar]
  72. Gruhne B., Kamranvar S. A., Masucci M. G., Sompallae R. 2009b; EBV and genomic instability – a new look at the role of the virus in the pathogenesis of Burkitt’s lymphoma. Semin Cancer Biol 19:394–400 [View Article][PubMed]
    [Google Scholar]
  73. Han I., Harada S., Weaver D., Xue Y., Lane W., Orstavik S., Skalhegg B., Kieff E. 2001; EBNA-LP associates with cellular proteins including DNA-PK and HA95. J Virol 75:2475–2481 [View Article][PubMed]
    [Google Scholar]
  74. Harada J. N., Shevchenko A., Shevchenko A., Pallas D. C., Berk A. J. 2002; Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery. J Virol 76:9194–9206 [View Article][PubMed]
    [Google Scholar]
  75. Hart L. S., Yannone S. M., Naczki C., Orlando J. S., Waters S. B., Akman S. A., Chen D. J., Ornelles D., Koumenis C. 2005; The adenovirus E4orf6 protein inhibits DNA double strand break repair and radiosensitizes human tumor cells in an E1B-55K-independent manner. J Biol Chem 280:1474–1481 [View Article][PubMed]
    [Google Scholar]
  76. Hart L. S., Ornelles D., Koumenis C. 2007; The adenoviral E4orf6 protein induces atypical apoptosis in response to DNA damage. J Biol Chem 282:6061–6067 [View Article][PubMed]
    [Google Scholar]
  77. Hartmann M., Brunnemann H. 1972; Chromosome aberrations in cytomegalovirus-infected human diploid cell culture. Acta Virol 16:176[PubMed]
    [Google Scholar]
  78. Haviv I., Vaizel D., Shaul Y. 1996; pX, the HBV-encoded coactivator, interacts with components of the transcription machinery and stimulates transcription in a TAF-independent manner. EMBO J 15:3413–3420[PubMed]
    [Google Scholar]
  79. Hein J., Boichuk S., Wu J., Cheng Y., Freire R., Jat P. S., Roberts T. M., Gjoerup O. V. 2009; Simian virus 40 large T antigen disrupts genome integrity and activates a DNA damage response via Bub1 binding. J Virol 83:117–127 [View Article][PubMed]
    [Google Scholar]
  80. Hoskins E. E., Morris T. A., Higginbotham J. M., Spardy N., Cha E., Kelly P., Williams D. A., Wikenheiser-Brokamp K. A., Duensing S., Wells S. I. 2009; Fanconi anemia deficiency stimulates HPV-associated hyperplastic growth in organotypic epithelial raft culture. Oncogene 28:674–685 [View Article][PubMed]
    [Google Scholar]
  81. Inagaki K., Ma C., Storm T. A., Kay M. A., Nakai H. 2007; The role of DNA-PKcs and artemis in opening viral DNA hairpin termini in various tissues in mice. J Virol 81:11304–11321 [View Article][PubMed]
    [Google Scholar]
  82. Jault F. M., Jault J.-M., Ruchti F., Fortunato E. A., Clark C., Corbeil J., Richman D. D., Spector D. H. 1995; Cytomegalovirus infection induces high levels of cyclins, phosphorylated Rb, and p53, leading to cell cycle arrest. J Virol 69:6697–6704[PubMed]
    [Google Scholar]
  83. Jaitovich-Groisman I. J., Koshy R., Henkler F., Groopman J. D., Alaoui-Jamali M. A. 1999; Downregulation of DNA excision repair by the hepatitis B virus-x protein occurs in p53-proficient and p53-deficient cells. Carcinogenesis 20:479–483 [View Article][PubMed]
    [Google Scholar]
  84. Jaitovich-Groisman I., Benlimame N., Slagle B. L., Perez M. H., Alpert L., Song D. J., Fotouhi-Ardakani N., Galipeau J., Alaoui-Jamali M. A. 2001; Transcriptional regulation of the TFIIH transcription repair components XPB and XPD by the hepatitis B virus x protein in liver cells and transgenic liver tissue. J Biol Chem 276:14124–14132[PubMed]
    [Google Scholar]
  85. Jia L., Wang X. W., Harris C. C. 1999; Hepatitis B virus X protein inhibits nucleotide excision repair. Int J Cancer 80:875–879 [View Article][PubMed]
    [Google Scholar]
  86. Johnson P. A., Miyanohara A., Levine F., Cahill T., Friedmann T. 1992; Cytotoxicity of a replication-defective mutant of herpes simplex virus type 1. J Virol 66:2952–2965[PubMed]
    [Google Scholar]
  87. Kadaja M., Isok-Paas H., Laos T., Ustav E., Ustav M. 2009; Mechanism of genomic instability in cells infected with the high-risk human papillomaviruses. PLoS Pathog 5:e1000397 [View Article][PubMed]
    [Google Scholar]
  88. Kalejta R. F., Shenk T. 2003; The human cytomegalovirus UL82 gene product (pp71) accelerates progression through the G1 phase of the cell cycle. J Virol 77:3451–3459 [View Article][PubMed]
    [Google Scholar]
  89. Kalejta R. F., Bechtel J. T., Shenk T. 2003; Human cytomegalovirus pp71 stimulates cell cycle progression by inducing the proteasome-dependent degradation of the retinoblastoma family of tumor suppressors. Mol Cell Biol 23:1885–1895 [View Article][PubMed]
    [Google Scholar]
  90. Kamranvar S. A., Gruhne B., Szeles A., Masucci M. G. 2007; Epstein-Barr virus promotes genomic instability in Burkitt’s lymphoma. Oncogene 26:5115–5123 [View Article][PubMed]
    [Google Scholar]
  91. Kersey J. H., Gatti R. A., Good R. A., Aaronson S. A., Todaro G. J. 1972; Susceptibility of cells from patients with primary immunodeficiency diseases to transformation by simian virus 40. Proc Natl Acad Sci U S A 69:980–982 [View Article][PubMed]
    [Google Scholar]
  92. King L. E., Fisk J. C., Dornan E. S., Donaldson M. M., Melendy T., Morgan I. M. 2010; Human papillomavirus E1 and E2 mediated DNA replication is not arrested by DNA damage signalling. Virology 406:95–102 [View Article][PubMed]
    [Google Scholar]
  93. Knipe D. M., Cliffe A. 2008; Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 6:211–221 [View Article][PubMed]
    [Google Scholar]
  94. Koopal S., Furuhjelm J. H., Järviluoma A., Jäämaa S., Pyakurel P., Pussinen C., Wirzenius M., Biberfeld P., Alitalo K. other authors 2007; Viral oncogene-induced DNA damage response is activated in Kaposi sarcoma tumorigenesis. PLoS Pathog 3:1348–1360 [View Article][PubMed]
    [Google Scholar]
  95. Kudoh A., Fujita M., Zhang L., Shirata N., Daikoku T., Sugaya Y., Isomura H., Nishiyama Y., Tsurumi T. 2005; Epstein-Barr virus lytic replication elicits ATM checkpoint signal transduction while providing an S-phase-like cellular environment. J Biol Chem 280:8156–8163 [View Article][PubMed]
    [Google Scholar]
  96. Kudoh A., Iwahori S., Sato Y., Nakayama S., Isomura H., Murata T., Tsurumi T. 2009; Homologous recombinational repair factors are recruited and loaded onto the viral DNA genome in Epstein-Barr virus replication compartments. J Virol 83:6641–6651 [View Article][PubMed]
    [Google Scholar]
  97. Kulkarni A. S., Fortunato E. A. 2011; Stimulation of homology-directed repair at I-SceI-induced DNA breaks during the permissive life cycle of human cytomegalovirus. J Virol 85:6049–6054 [View Article][PubMed]
    [Google Scholar]
  98. Lacoste S., Wiechec E., Dos Santos Silva A. G., Guffei A., Williams G., Lowbeer M., Benedek K., Henriksson M., Klein G., Mai S. 2010; Chromosomal rearrangements after ex vivo Epstein-Barr virus (EBV) infection of human B cells. Oncogene 29:503–515 [View Article][PubMed]
    [Google Scholar]
  99. Lee S. G., Rho H. M. 2000; Transcriptional repression of the human p53 gene by hepatitis B viral X protein. Oncogene 19:468–471 [View Article][PubMed]
    [Google Scholar]
  100. Lee T. H., Elledge S. J., Butel J. S. 1995; Hepatitis B virus X protein interacts with a probable cellular DNA repair protein. J Virol 69:1107–1114[PubMed]
    [Google Scholar]
  101. Leppard K. N., Everett R. D. 1999; The adenovirus type 5 E1b 55K and E4 Orf3 proteins associate in infected cells and affect ND10 components. J Gen Virol 80:997–1008[PubMed]
    [Google Scholar]
  102. Li D., Tian Y., Ma Y., Benjamin T. 2004; p150(Sal2) is a p53-independent regulator of p21(WAF1/CIP). Mol Cell Biol 24:3885–3893 [View Article][PubMed]
    [Google Scholar]
  103. Li H., Baskaran R., Krisky D. M., Bein K., Grandi P., Cohen J. B., Glorioso J. C. 2008; Chk2 is required for HSV-1 ICP0-mediated G2/M arrest and enhancement of virus growth. Virology 375:13–23 [View Article][PubMed]
    [Google Scholar]
  104. Li T., Robert E. I., van Breugel P. C., Strubin M., Zheng N. 2010; A promiscuous α-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery. Nat Struct Mol Biol 17:105–111 [View Article][PubMed]
    [Google Scholar]
  105. Li R., Zhu J., Xie Z., Liao G., Liu J., Chen M. R., Hu S., Woodard C., Lin J. other authors 2011; Conserved herpesvirus kinases target the DNA damage response pathway and TIP60 histone acetyltransferase to promote virus replication. Cell Host Microbe 10:390–400 [View Article][PubMed]
    [Google Scholar]
  106. Lilley C. E., Carson C. T., Muotri A. R., Gage F. H., Weitzman M. D. 2005; DNA repair proteins affect the lifecycle of herpes simplex virus 1. Proc Natl Acad Sci U S A 102:5844–5849 [View Article][PubMed]
    [Google Scholar]
  107. Lilley C. E., Schwartz R. A., Weitzman M. D. 2007; Using or abusing: viruses and the cellular DNA damage response. Trends Microbiol 15:119–126 [View Article][PubMed]
    [Google Scholar]
  108. Lilley C. E., Chaurushiya M. S., Boutell C., Landry S., Suh J., Panier S., Everett R. D., Stewart G. S., Durocher D., Weitzman M. D. 2010; A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO J 29:943–955 [View Article][PubMed]
    [Google Scholar]
  109. Lilley C. E., Chaurushiya M. S., Boutell C., Everett R. D., Weitzman M. D. 2011; The intrinsic antiviral defense to incoming HSV-1 genomes includes specific DNA repair proteins and is counteracted by the viral protein ICP0. PLoS Pathog 7:e1002084 [View Article][PubMed]
    [Google Scholar]
  110. Linden R. M., Berns K. I. 2000; Molecular biology of adeno-associated viruses. Contrib Microbiol 4:68–84 [View Article][PubMed]
    [Google Scholar]
  111. Lischka P., Sorg G., Kann M., Winkler M., Stamminger T. 2003; A nonconventional nuclear localization signal within the UL84 protein of human cytomegalovirus mediates nuclear import via the importin α/β pathway. J Virol 77:3734–3748 [View Article][PubMed]
    [Google Scholar]
  112. Liu Y., Shevchenko A., Shevchenko A., Berk A. J. 2005; Adenovirus exploits the cellular aggresome response to accelerate inactivation of the MRN complex. J Virol 79:14004–14016 [View Article][PubMed]
    [Google Scholar]
  113. Lombard D. B., Guarente L. 2000; Nijmegen breakage syndrome disease protein and MRE11 at PML nuclear bodies and meiotic telomeres. Cancer Res 60:2331–2334[PubMed]
    [Google Scholar]
  114. Lüleci G., Sakízlí M., Günalp A. 1980; Selective chromosomal damage caused by human cytomegalovirus. Acta Virol 24:341–345[PubMed]
    [Google Scholar]
  115. Luo K., Ehrlich E., Xiao Z., Zhang W., Ketner G., Yu X. F. 2007a; Adenovirus E4orf6 assembles with Cullin5-ElonginB-ElonginC E3 ubiquitin ligase through an HIV/SIV Vif-like BC-box to regulate p53. FASEB J 21:1742–1750 [View Article][PubMed]
    [Google Scholar]
  116. Luo M. H., Rosenke K., Czornak K., Fortunato E. A. 2007b; Human cytomegalovirus disrupts both ataxia telangiectasia mutated protein (ATM)- and ATM-Rad3-related kinase-mediated DNA damage responses during lytic infection. J Virol 81:1934–1950 [View Article][PubMed]
    [Google Scholar]
  117. Martin-Lluesma S., Schaeffer C., Robert E. I., van Breugel P. C., Leupin O., Hantz O., Strubin M. 2008; Hepatitis B virus X protein affects S phase progression leading to chromosome segregation defects by binding to damaged DNA binding protein 1. Hepatology 48:1467–1476 [View Article][PubMed]
    [Google Scholar]
  118. Maser R. S., DePinho R. A. 2004; Telomeres and the DNA damage response: why the fox is guarding the henhouse. DNA Repair (Amst) 3:979–988 [View Article][PubMed]
    [Google Scholar]
  119. Matsuda Y., Ichida T. 2009; Impact of hepatitis B virus X protein on the DNA damage response during hepatocarcinogenesis. Med Mol Morphol 42:138–142 [View Article][PubMed]
    [Google Scholar]
  120. McBride A. A. 2008; Replication and partitioning of papillomavirus genomes. Adv Virus Res 72:155–205 [View Article][PubMed]
    [Google Scholar]
  121. McDougall J. K. 1970; Effects of adenoviruses on the chromosomes of normal human cells and cells trisomic for an E chromosome. Nature 225:456–458 [View Article][PubMed]
    [Google Scholar]
  122. McDougall J. K. 1971a; Adenovirus-induced chromosome aberrations in human cells. J Gen Virol 12:43–51 [View Article][PubMed]
    [Google Scholar]
  123. McDougall J. K. 1971b; Spontaneous and adenovirus type 12-induced chromosome aberrations in Fanconi’s anaemia fibroblasts. Int J Cancer 7:526–534 [View Article][PubMed]
    [Google Scholar]
  124. McElroy A. K., Dwarakanath R. S., Spector D. H. 2000; Dysregulation of cyclin E gene expression in human cytomegalovirus-infected cells requires viral early gene expression and is associated with changes in the Rb-related protein p130. J Virol 74:4192–4206 [View Article][PubMed]
    [Google Scholar]
  125. Melendy T., Stillman B. 1993; An interaction between replication protein A and SV40 T antigen appears essential for primosome assembly during SV40 DNA replication. J Biol Chem 268:3389–3395[PubMed]
    [Google Scholar]
  126. Mincheva A., Dundarov S., Bradvarova I. 1984; Effects of herpes simplex virus strains on human fibroblast and lymphocyte chromosomes and the localization of chromosomal aberrations. Acta Virol 28:97–106[PubMed]
    [Google Scholar]
  127. Mohni K. N., Livingston C. M., Cortez D., Weller S. K. 2010; ATR and ATRIP are recruited to herpes simplex virus type 1 replication compartments even though ATR signaling is disabled. J Virol 84:12152–12164 [View Article][PubMed]
    [Google Scholar]
  128. Moody C. A., Laimins L. A. 2009; Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog 5:e1000605 [View Article][PubMed]
    [Google Scholar]
  129. Moody C. A., Laimins L. A. 2010; Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10:550–560 [View Article][PubMed]
    [Google Scholar]
  130. Nag A., Datta A., Yoo K., Bhattacharyya D., Chakrabortty A., Wang X., Slagle B. L., Costa R. H., Raychaudhuri P. 2001; DDB2 induces nuclear accumulation of the hepatitis B virus X protein independently of binding to DDB1. J Virol 75:10383–10392 [View Article][PubMed]
    [Google Scholar]
  131. Nakamura H., Li M., Zarycki J., Jung J. U. 2001; Inhibition of p53 tumor suppressor by viral interferon regulatory factor. J Virol 75:7572–7582 [View Article][PubMed]
    [Google Scholar]
  132. Neel J. V., Major E. O., Awa A. A., Glover T., Burgess A., Traub R., Curfman B., Satoh C. 1996; Hypothesis: “Rogue cell”-type chromosomal damage in lymphocytes is associated with infection with the JC human polyoma virus and has implications for oncopenesis. Proc Natl Acad Sci U S A 93:2690–2695 [View Article][PubMed]
    [Google Scholar]
  133. Nichols W. W. 1983; Viral interactions with the mammalian genome relevant to neoplasia. In Chromosome Mutation and Neoplasia pp. 317–332 Edited by German J. New York: Alan R. Liss;
    [Google Scholar]
  134. Nichols W. W., Bradt C. I., Toji L. H., Godley M., Segawa M. 1978; Induction of sister chromatid exchanges by transformation with simian virus 40. Cancer Res 38:960–964[PubMed]
    [Google Scholar]
  135. Nikitin P. A., Yan C. M., Forte E., Bocedi A., Tourigny J. P., White R. E., Allday M. J., Patel A., Dave S. S. other authors 2010; An ATM/Chk2-mediated DNA damage-responsive signaling pathway suppresses Epstein-Barr virus transformation of primary human B cells. Cell Host Microbe 8:510–522 [View Article][PubMed]
    [Google Scholar]
  136. Noon A. T., Shibata A., Rief N., Löbrich M., Stewart G. S., Jeggo P. A., Goodarzi A. A. 2010; 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat Cell Biol 12:177–184 [View Article][PubMed]
    [Google Scholar]
  137. O’Neill F. J., Miles C. P. 1969; Chromosome changes in human cells induced by herpes simplex, types 1 and 2. Nature 223:851–852 [View Article][PubMed]
    [Google Scholar]
  138. Orazio N. I., Naeger C. M., Karlseder J., Weitzman M. D. 2011; The adenovirus E1b55K/E4orf6 complex induces degradation of the Bloom helicase during infection. J Virol 85:1887–1892 [View Article][PubMed]
    [Google Scholar]
  139. Park J. W., Pitot H. C., Strati K., Spardy N., Duensing S., Grompe M., Lambert P. F. 2010; Deficiencies in the Fanconi anemia DNA damage response pathway increase sensitivity to HPV-associated head and neck cancer. Cancer Res 70:9959–9968 [View Article][PubMed]
    [Google Scholar]
  140. Parker G. A., Touitou R., Allday M. J. 2000; Epstein-Barr virus EBNA3C can disrupt multiple cell cycle checkpoints and induce nuclear division divorced from cytokinesis. Oncogene 19:700–709 [View Article][PubMed]
    [Google Scholar]
  141. Parkinson J., Lees-Miller S. P., Everett R. D. 1999; Herpes simplex virus type 1 immediate-early protein vmw110 induces the proteasome-dependent degradation of the catalytic subunit of DNA-dependent protein kinase. J Virol 73:650–657[PubMed]
    [Google Scholar]
  142. Peat D. S., Stanley M. A. 1986; Chromosome damage induced by herpes simplex virus type 1 in early infection. J Gen Virol 67:2273–2277 [View Article][PubMed]
    [Google Scholar]
  143. Pett M. R., Herdman M. T., Palmer R. D., Yeo G. S., Shivji M. K., Stanley M. A., Coleman N. 2006; Selection of cervical keratinocytes containing integrated HPV16 associates with episome loss and an endogenous antiviral response. Proc Natl Acad Sci U S A 103:3822–3827 [View Article][PubMed]
    [Google Scholar]
  144. Polo S. E., Blackford A. N., Chapman J. R., Baskcomb L., Gravel S., Rusch A., Thomas A., Blundred R., Smith P. other authors 2012; Regulation of DNA-end resection by hnRNPU-like proteins promotes DNA double-strand break signaling and repair. Mol Cell 45:505–516 [View Article][PubMed]
    [Google Scholar]
  145. Poma E. E., Kowalik T. F., Zhu L., Sinclair J. H., Huang E. S. 1996; The human cytomegalovirus IE1-72 protein interacts with the cellular p107 protein and relieves p107-mediated transcriptional repression of an E2F-responsive promoter. J Virol 70:7867–7877[PubMed]
    [Google Scholar]
  146. Qadri I., Maguire H. F., Siddiqui A. 1995; Hepatitis B virus transactivator protein X interacts with the TATA-binding protein. Proc Natl Acad Sci U S A 92:1003–1007 [View Article][PubMed]
    [Google Scholar]
  147. Qadri I., Conaway J. W., Conaway R. C., Schaack J., Siddiqui A. 1996; Hepatitis B virus transactivator protein, HBx, associates with the components of TFIIH and stimulates the DNA helicase activity of TFIIH. Proc Natl Acad Sci U S A 93:10578–10583 [View Article][PubMed]
    [Google Scholar]
  148. Qadri I., Fatima K., AbdeL-Hafiz H. 2011; Hepatitis B virus X protein impedes the DNA repair via its association with transcription factor, TFIIH. BMC Microbiol 11:48 [View Article][PubMed]
    [Google Scholar]
  149. Querido E., Marcellus R. C., Lai A., Charbonneau R., Teodoro J. G., Ketner G., Branton P. E. 1997; Regulation of p53 levels by the E1B 55-kilodalton protein and E4orf6 in adenovirus-infected cells. J Virol 71:3788–3798[PubMed]
    [Google Scholar]
  150. Querido E., Blanchette P., Yan Q., Kamura T., Morrison M., Boivin D., Kaelin W. G., Conaway R. C., Conaway J. W., Branton P. E. 2001; Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev 15:3104–3117 [View Article][PubMed]
    [Google Scholar]
  151. Reiss K., Khalili K., Giordano A., Trojanek J. 2006; JC virus large T-antigen and IGF-I signaling system merge to affect DNA repair and genomic integrity. J Cell Physiol 206:295–300 [View Article][PubMed]
    [Google Scholar]
  152. Ren B., Cam H., Takahashi Y., Volkert T., Terragni J., Young R. A., Dynlacht B. D. 2002; E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes Dev 16:245–256 [View Article][PubMed]
    [Google Scholar]
  153. Ricciardiello L., Baglioni M., Giovannini C., Pariali M., Cenacchi G., Ripalti A., Landini M. P., Sawa H., Nagashima K. other authors 2003; Induction of chromosomal instability in colonic cells by the human polyomavirus JC virus. Cancer Res 63:7256–7262[PubMed]
    [Google Scholar]
  154. Rogoff H. A., Kowalik T. F. 2004; Life, death and E2F: linking proliferation control and DNA damage signaling via E2F1. Cell Cycle 3:845–846 [View Article][PubMed]
    [Google Scholar]
  155. Roizman B., Knipe D. M., Whitley R. J. 2007; Herpes simplex viruses. In Fields Virology, 5th edn. pp. 2501–2602 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  156. Rooney C. M., Rowe D. T., Ragot T., Farrell P. J. 1989; The spliced BZLF1 gene of Epstein-Barr virus (EBV) transactivates an early EBV promoter and induces the virus productive cycle. J Virol 63:3109–3116[PubMed]
    [Google Scholar]
  157. Rowe M., Glaunsinger B., van Leeuwen D., Zuo J., Sweetman D., Ganem D., Middeldorp J., Wiertz E. J., Ressing M. E. 2007; Host shutoff during productive Epstein-Barr virus infection is mediated by BGLF5 and may contribute to immune evasion. Proc Natl Acad Sci U S A 104:3366–3371 [View Article][PubMed]
    [Google Scholar]
  158. Sakakibara N., Mitra R., McBride A. A. 2011; The papillomavirus E1 helicase activates a cellular DNA damage response in viral replication foci. J Virol 85:8981–8995 [View Article][PubMed]
    [Google Scholar]
  159. Sakizli M., Lüleci G., Günalp A. 1981; Effect of cytomegalovirus on adult human chromosomes. Acta Virol 25:248–250[PubMed]
    [Google Scholar]
  160. Sato Y., Kamura T., Shirata N., Murata T., Kudoh A., Iwahori S., Nakayama S., Isomura H., Nishiyama Y., Tsurumi T. 2009a; Degradation of phosphorylated p53 by viral protein-ECS E3 ligase complex. PLoS Pathog 5:e1000530 [View Article][PubMed]
    [Google Scholar]
  161. Sato Y., Shirata N., Kudoh A., Iwahori S., Nakayama S., Murata T., Isomura H., Nishiyama Y., Tsurumi T. 2009b; Expression of Epstein-Barr virus BZLF1 immediate-early protein induces p53 degradation independent of MDM2, leading to repression of p53-mediated transcription. Virology 388:204–211 [View Article][PubMed]
    [Google Scholar]
  162. Scheffner M., Werness B. A., Huibregtse J. M., Levine A. J., Howley P. M. 1990; The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136 [View Article][PubMed]
    [Google Scholar]
  163. Schreiner S., Wimmer P., Sirma H., Everett R. D., Blanchette P., Groitl P., Dobner T. 2010; Proteasome-dependent degradation of Daxx by the viral E1B-55K protein in human adenovirus-infected cells. J Virol 84:7029–7038 [View Article][PubMed]
    [Google Scholar]
  164. Schreiner S., Wimmer P., Dobner T. 2012; Adenovirus degradation of cellular proteins. Future Microbiol 7:211–225 [View Article][PubMed]
    [Google Scholar]
  165. Schwartz R. A., Palacios J. A., Cassell G. D., Adam S., Giacca M., Weitzman M. D. 2007; The Mre11/Rad50/Nbs1 complex limits adeno-associated virus transduction and replication. J Virol 81:12936–12945 [View Article][PubMed]
    [Google Scholar]
  166. Schwartz R. A., Carson C. T., Schuberth C., Weitzman M. D. 2009; Adeno-associated virus replication induces a DNA damage response coordinated by DNA-dependent protein kinase. J Virol 83:6269–6278 [View Article][PubMed]
    [Google Scholar]
  167. Seo T., Park J., Lee D., Hwang S. G., Choe J. 2001; Viral interferon regulatory factor 1 of Kaposi’s sarcoma-associated herpesvirus binds to p53 and represses p53-dependent transcription and apoptosis. J Virol 75:6193–6198 [View Article][PubMed]
    [Google Scholar]
  168. Shen Y., Zhu H., Shenk T. 1997; Human cytomagalovirus IE1 and IE2 proteins are mutagenic and mediate “hit-and-run” oncogenic transformation in cooperation with the adenovirus E1A proteins. Proc Natl Acad Sci U S A 94:3341–3345 [View Article][PubMed]
    [Google Scholar]
  169. Shen Y. H., Utama B., Wang J., Raveendran M., Senthil D., Waldman W. J., Belcher J. D., Vercellotti G., Martin D. other authors 2004; Human cytomegalovirus causes endothelial injury through the ataxia telangiectasia mutant and p53 DNA damage signaling pathways. Circ Res 94:1310–1317 [View Article][PubMed]
    [Google Scholar]
  170. Shi Y., Dodson G. E., Shaikh S., Rundell K., Tibbetts R. S. 2005; Ataxia-telangiectasia-mutated (ATM) is a T-antigen kinase that controls SV40 viral replication in vivo. . J Biol Chem 280:40195–40200 [View Article][PubMed]
    [Google Scholar]
  171. Shin Y. C., Nakamura H., Liang X., Feng P., Chang H., Kowalik T. F., Jung J. U. 2006; Inhibition of the ATM/p53 signal transduction pathway by Kaposi’s sarcoma-associated herpesvirus interferon regulatory factor 1. J Virol 80:2257–2266 [View Article][PubMed]
    [Google Scholar]
  172. Shirata N., Kudoh A., Daikoku T., Tatsumi Y., Fujita M., Kiyono T., Sugaya Y., Isomura H., Ishizaki K., Tsurumi T. 2005; Activation of ataxia telangiectasia-mutated DNA damage checkpoint signal transduction elicited by herpes simplex virus infection. J Biol Chem 280:30336–30341 [View Article][PubMed]
    [Google Scholar]
  173. Sitterlin D., Lee T. H., Prigent S., Tiollais P., Butel J. S., Transy C. 1997; Interaction of the UV-damaged DNA-binding protein with hepatitis B virus X protein is conserved among mammalian hepadnaviruses and restricted to transactivation-proficient X-insertion mutants. J Virol 71:6194–6199[PubMed]
    [Google Scholar]
  174. Sitterlin D., Bergametti F., Transy C. 2000a; UVDDB p127-binding modulates activities and intracellular distribution of hepatitis B virus X protein. Oncogene 19:4417–4426 [View Article][PubMed]
    [Google Scholar]
  175. Sitterlin D., Bergametti F., Tiollais P., Tennant B. C., Transy C. 2000b; Correct binding of viral X protein to UVDDB-p127 cellular protein is critical for efficient infection by hepatitis B viruses. Oncogene 19:4427–4431 [View Article][PubMed]
    [Google Scholar]
  176. Song S., Lu Y., Choi Y. K., Han Y., Tang Q., Zhao G., Berns K. I., Flotte T. R. 2004; DNA-dependent PK inhibits adeno-associated virus DNA integration. Proc Natl Acad Sci U S A 101:2112–2116 [View Article][PubMed]
    [Google Scholar]
  177. Soria C., Estermann F. E., Espantman K. C., O’Shea C. C. 2010; Heterochromatin silencing of p53 target genes by a small viral protein. Nature 466:1076–1081 [View Article][PubMed]
    [Google Scholar]
  178. Spardy N., Duensing A., Charles D., Haines N., Nakahara T., Lambert P. F., Duensing S. 2007; The human papillomavirus type 16 E7 oncoprotein activates the Fanconi anemia (FA) pathway and causes accelerated chromosomal instability in FA cells. J Virol 81:13265–13270 [View Article][PubMed]
    [Google Scholar]
  179. Spardy N., Covella K., Cha E., Hoskins E. E., Wells S. I., Duensing A., Duensing S. 2009; Human papillomavirus 16 E7 oncoprotein attenuates DNA damage checkpoint control by increasing the proteolytic turnover of claspin. Cancer Res 69:7022–7029 [View Article][PubMed]
    [Google Scholar]
  180. Steegenga W. T., Riteco N., Jochemsen A. G., Fallaux F. J., Bos J. L. 1998; The large E1B protein together with the E4orf6 protein target p53 for active degradation in adenovirus infected cells. Oncogene 16:349–357 [View Article][PubMed]
    [Google Scholar]
  181. Stewart G. S., Panier S., Townsend K., Al-Hakim A. K., Kolas N. K., Miller E. S., Nakada S., Ylanko J., Olivarius S. other authors 2009; The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 136:420–434 [View Article][PubMed]
    [Google Scholar]
  182. Stich H. F., Hsu T. C., Rapp F. 1964; Viruses and mammalian chromosomes. I. Localization of chromosome aberrations after infection with herpes simplex virus. Virology 22:439–445 [View Article][PubMed]
    [Google Scholar]
  183. Stracker T. H., Carson C. T., Weitzman M. D. 2002; Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 418:348–352 [View Article][PubMed]
    [Google Scholar]
  184. Stracker T. H., Lee D. V., Carson C. T., Araujo F. D., Ornelles D. A., Weitzman M. D. 2005; Serotype-specific reorganization of the Mre11 complex by adenoviral E4orf3 proteins. J Virol 79:6664–6673 [View Article][PubMed]
    [Google Scholar]
  185. Tarakanova V. L., Leung-Pineda V., Hwang S., Yang C. W., Matatall K., Basson M., Sun R., Piwnica-Worms H., Sleckman B. P., Virgin H. W. IV 2007; γ-Herpesvirus kinase actively initiates a DNA damage response by inducing phosphorylation of H2AX to foster viral replication. Cell Host Microbe 1:275–286 [View Article][PubMed]
    [Google Scholar]
  186. Theile M., Grabowski G. 1990; Mutagenic activity of BKV and JCV in human and other mammalian cells. Arch Virol 113:221–233 [View Article][PubMed]
    [Google Scholar]
  187. Todaro G. J., Green H., Swift M. R. 1966; Susceptibility of human diploid fibroblast strains to transformation by SV40 virus. Science 153:1252–1254 [View Article][PubMed]
    [Google Scholar]
  188. Trojanek J., Ho T., Del Valle L., Nowicki M., Wang J. Y., Lassak A., Peruzzi F., Khalili K., Skorski T., Reiss K. 2003; Role of the insulin-like growth factor I/insulin receptor substrate 1 axis in Rad51 trafficking and DNA repair by homologous recombination. Mol Cell Biol 23:7510–7524 [View Article][PubMed]
    [Google Scholar]
  189. Trojanek J., Croul S., Ho T., Wang J. Y., Darbinyan A., Nowicki M., Del Valle L., Skorski T., Khalili K., Reiss K. 2006; T-antigen of the human polyomavirus JC attenuates faithful DNA repair by forcing nuclear interaction between IRS-1 and Rad51. J Cell Physiol 206:35–46 [View Article][PubMed]
    [Google Scholar]
  190. Wade M., Allday M. J. 2000; Epstein–Barr virus suppresses a G2/M checkpoint activated by genotoxins. Mol Cell Biol 20:1344–1360 [View Article][PubMed]
    [Google Scholar]
  191. Wade M., Kowalik T. F., Mudryj M., Huang E. S., Azizkhan J. C. 1992; E2F mediates dihydrofolate reductase promoter activation and multiprotein complex formation in human cytomegalovirus infection. Mol Cell Biol 12:4364–4374[PubMed]
    [Google Scholar]
  192. Wahren B., Lampert F., Goetz O. 1972; Herpes viruses and chromosomal alterations seen with light and whole-mount electron microscopy. Exp Cell Res 75:271–274 [View Article][PubMed]
    [Google Scholar]
  193. Wang X. W., Forrester K., Yeh H., Feitelson M. A., Gu J.-R., Harris C. C. 1994; Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc Natl Acad Sci U S A 91:2230–2234 [View Article][PubMed]
    [Google Scholar]
  194. Wang X. W., Gibson M. K., Vermeulen W., Yeh H., Forrester K., Stürzbecher H. W., Hoeijmakers J. H., Harris C. C. 1995; Abrogation of p53-induced apoptosis by the hepatitis B virus X gene. Cancer Res 55:6012–6016[PubMed]
    [Google Scholar]
  195. Webb T., Harding M. 1977; Chromosome complement and SV40 transformation of cells from patients susceptible to malignant disease. Br J Cancer 36:583–591 [View Article][PubMed]
    [Google Scholar]
  196. Webb T., Harnden D. G., Harding M. 1977; The chromosome analysis and susceptibility to transformation by Simian Virus 40 of fibroblasts from ataxia-telangiectasia. Cancer Res 37:997–1002[PubMed]
    [Google Scholar]
  197. Weiden M. D., Ginsberg H. S. 1994; Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci U S A 91:153–157 [View Article][PubMed]
    [Google Scholar]
  198. Weitzman M. D., Lilley C. E., Chaurushiya M. S. 2010; Genomes in conflict: maintaining genome integrity during virus infection. Annu Rev Microbiol 64:61–81 [View Article][PubMed]
    [Google Scholar]
  199. Weitzman M. D., Lilley C. E., Chaurushiya M. S. 2011; Changing the ubiquitin landscape during viral manipulation of the DNA damage response. FEBS Lett 585:2897–2906 [View Article][PubMed]
    [Google Scholar]
  200. Wiebusch L., Uecker R., Hagemeier C. 2003; Human cytomegalovirus prevents replication licensing by inhibiting MCM loading onto chromatin. EMBO Rep 4:42–46 [View Article][PubMed]
    [Google Scholar]
  201. Wilkinson D. E., Weller S. K. 2004; Recruitment of cellular recombination and repair proteins to sites of herpes simplex virus type 1 DNA replication is dependent on the composition of viral proteins within prereplicative sites and correlates with the induction of the DNA damage response. J Virol 78:4783–4796 [View Article][PubMed]
    [Google Scholar]
  202. Winder D. M., Pett M. R., Foster N., Shivji M. K., Herdman M. T., Stanley M. A., Venkitaraman A. R., Coleman N. 2007; An increase in DNA double-strand breaks, induced by Ku70 depletion, is associated with human papillomavirus 16 episome loss and de novo viral integration events. J Pathol 213:27–34 [View Article][PubMed]
    [Google Scholar]
  203. Wu X., Avni D., Chiba T., Yan F., Zhao Q., Lin Y., Heng H., Livingston D. 2004; SV40 T antigen interacts with Nbs1 to disrupt DNA replication control. Genes Dev 18:1305–1316 [View Article][PubMed]
    [Google Scholar]
  204. Wu C. C., Liu M. T., Chang Y. T., Fang C. Y., Chou S. P., Liao H. W., Kuo K. L., Hsu S. L., Chen Y. R. other authors 2010; Epstein-Barr virus DNase (BGLF5) induces genomic instability in human epithelial cells. Nucleic Acids Res 38:1932–1949 [View Article][PubMed]
    [Google Scholar]
  205. Yee J., White R. E., Anderton E., Allday M. J. 2011; Latent Epstein-Barr virus can inhibit apoptosis in B cells by blocking the induction of NOXA expression. PLoS ONE 6:e28506 [View Article][PubMed]
    [Google Scholar]
  206. Zantema A., Schrier P. I., Davis-Olivier A., van Laar T., Vaessen R. T., van der EB A. J. 1985; Adenovirus serotype determines association and localization of the large E1B tumor antigen with cellular tumor antigen p53 in transformed cells. Mol Cell Biol 5:3084–3091[PubMed]
    [Google Scholar]
  207. Zhao X., Madden-Fuentes R. J., Lou B. X., Pipas J. M., Gerhardt J., Rigell C. J., Fanning E. 2008; Ataxia telangiectasia-mutated damage-signaling kinase- and proteasome-dependent destruction of Mre11-Rad50-Nbs1 subunits in Simian virus 40-infected primate cells. J Virol 82:5316–5328 [View Article][PubMed]
    [Google Scholar]
  208. Zur Hausen H. 1967; Induction of specific chromosomal aberrations by adenovirus type 12 in human embryonic kidney cells. J Virol 1:1174–1185[PubMed]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.044412-0
Loading
/content/journal/jgv/10.1099/vir.0.044412-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error