1887

Abstract

We have developed a porcine intestine epithelial cell line, designated SD-PJEC for the propagation of influenza viruses. The SD-PJEC cell line is a subclone of the IPEC-J2 cell line, which was originally derived from newborn piglet jejunum. Our results demonstrate that SD-PJEC is a cell line of epithelial origin that preferentially expresses receptors of oligosaccharides with Sia2-6Gal modification. This cell line is permissive to infection with human and swine influenza A viruses and some avian influenza viruses, but poorly support the growth of human-origin influenza B viruses. Propagation of swine-origin influenza viruses in these cells results in a rapid growth rate within the first 24 h post-infection and the titres ranged from 4 to 8 log TCID ml. The SD-PJEC cell line was further tested as a potential alternative cell line to Madin–Darby canine kidney (MDCK) cells in conjunction with 293T cells for rescue of swine-origin influenza viruses using the reverse genetics system. The recombinant viruses A/swine/North Carolina/18161/02 (H1N1) and A/swine/Texas/4199-2/98 (H3N2) were rescued with virus titres of 7 and 8.25 log TCID ml, respectively. The availability of this swine-specific cell line represents a more relevant substrate for studies and growth of swine-origin influenza viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.044388-0
2012-09-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/9/2008.html?itemId=/content/journal/jgv/10.1099/vir.0.044388-0&mimeType=html&fmt=ahah

References

  1. Bateman A. C., Busch M. G., Karasin A. I., Bovin N., Olsen C. W.. ( 2008;). Amino acid 226 in the hemagglutinin of H4N6 influenza virus determines binding affinity for α2,6-linked sialic acid and infectivity levels in primary swine and human respiratory epithelial cells. . J Virol 82:, 8204–8209. [CrossRef][PubMed]
    [Google Scholar]
  2. Belser J. A., Blixt O., Chen L. M., Pappas C., Maines T. R., Van Hoeven N., Donis R., Busch J., McBride R.. & other authors ( 2008;). Contemporary North American influenza H7 viruses possess human receptor specificity: implications for virus transmissibility. . Proc Natl Acad Sci U S A 105:, 7558–7563. [CrossRef][PubMed]
    [Google Scholar]
  3. Berschneider H. M.. ( 1989;). Development of normal cultured small intestinal epithelial cell lines which transport Na and Cl. [Abstract]. Gastroenterology 96:, A41.
    [Google Scholar]
  4. Buonagurio D. A., Nakada S., Fitch W. M., Palese P.. ( 1986;). Epidemiology of influenza C virus in man: multiple evolutionary lineages and low rate of change. . Virology 153:, 12–21. [CrossRef][PubMed]
    [Google Scholar]
  5. Chakrabarti A. K., Vipat V. C., Mukherjee S., Singh R., Pawar S. D., Mishra A. C.. ( 2010;). Host gene expression profiling in influenza A virus-infected lung epithelial (A549) cells: a comparative analysis between highly pathogenic and modified H5N1 viruses. . Virol J 7:, 219. [CrossRef][PubMed]
    [Google Scholar]
  6. Chutinimitkul S., Herfst S., Steel J., Lowen A. C., Ye J., van Riel D., Schrauwen E. J., Bestebroer T. M., Koel B.. & other authors ( 2010;). Virulence-associated substitution D222G in the hemagglutinin of 2009 pandemic influenza A(H1N1) virus affects receptor binding. . J Virol 84:, 11802–11813. [CrossRef][PubMed]
    [Google Scholar]
  7. Fedson D. S.. ( 2008;). NEW technologies for meeting the global demand for pandemic influenza vaccines. . Biologicals 36:, 346–349. [CrossRef][PubMed]
    [Google Scholar]
  8. Govorkova E. A., Kodihalli S., Alymova I. V., Fanget B., Webster R. G.. ( 1999a;). Growth and immunogenicity of influenza viruses cultivated in Vero or MDCK cells and in embryonated chicken eggs. . Dev Biol Stand 98:, 39–51, discussion 73–74.[PubMed]
    [Google Scholar]
  9. Govorkova E. A., Matrosovich M. N., Tuzikov A. B., Bovin N. V., Gerdil C., Fanget B., Webster R. G.. ( 1999b;). Selection of receptor-binding variants of human influenza A and B viruses in baby hamster kidney cells. . Virology 262:, 31–38. [CrossRef][PubMed]
    [Google Scholar]
  10. Gregersen J. P., Schmitt H. J., Trusheim H., Bröker M.. ( 2011;). Safety of MDCK cell culture-based influenza vaccines. . Future Microbiol 6:, 143–152. [CrossRef][PubMed]
    [Google Scholar]
  11. Hatakeyama S., Sakai-Tagawa Y., Kiso M., Goto H., Kawakami C., Mitamura K., Sugaya N., Suzuki Y., Kawaoka Y.. ( 2005;). Enhanced expression of an α2,6-linked sialic acid on MDCK cells improves isolation of human influenza viruses and evaluation of their sensitivity to a neuraminidase inhibitor. . J Clin Microbiol 43:, 4139–4146. [CrossRef][PubMed]
    [Google Scholar]
  12. Heynisch B., Frensing T., Heinze K., Seitz C., Genzel Y., Reichl U.. ( 2010;). Differential activation of host cell signalling pathways through infection with two variants of influenza A/Puerto Rico/8/34 (H1N1) in MDCK cells. . Vaccine 28:, 8210–8218. [CrossRef][PubMed]
    [Google Scholar]
  13. Hoffmann E., Webster R. G.. ( 2000;). Unidirectional RNA polymerase I-polymerase II transcription system for the generation of influenza A virus from eight plasmids. . J Gen Virol 81:, 2843–2847.[PubMed]
    [Google Scholar]
  14. Hoffmann E., Neumann G., Hobom G., Webster R. G., Kawaoka Y.. ( 2000;). “Ambisense” approach for the generation of influenza A virus: vRNA and mRNA synthesis from one template. . Virology 267:, 310–317. [CrossRef][PubMed]
    [Google Scholar]
  15. Hoffmann E., Krauss S., Perez D., Webby R., Webster R. G.. ( 2002;). Eight-plasmid system for rapid generation of influenza virus vaccines. . Vaccine 20:, 3165–3170. [CrossRef][PubMed]
    [Google Scholar]
  16. Hussain A. I., Cordeiro M., Sevilla E., Liu J.. ( 2010;). Comparison of egg and high yielding MDCK cell-derived live attenuated influenza virus for commercial production of trivalent influenza vaccine: in vitro cell susceptibility and influenza virus replication kinetics in permissive and semi-permissive cells. . Vaccine 28:, 3848–3855. [CrossRef][PubMed]
    [Google Scholar]
  17. Ito T., Couceiro J. N. S. S., Kelm S., Baum L. G., Krauss S., Castrucci M. R., Donatelli I., Kida H., Paulson J. C.. & other authors ( 1998;). Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. . J Virol 72:, 7367–7373.[PubMed]
    [Google Scholar]
  18. Kaeffer B., Bottreau E., Velge P., Pardon P.. ( 1993;). Epithelioid and fibroblastic cell lines derived from the ileum of an adult histocompatible miniature boar (d/d haplotype) and immortalized by SV40 plasmid. . Eur J Cell Biol 62:, 152–162.[PubMed]
    [Google Scholar]
  19. Kaushik R. S., Begg A. A., Wilson H. L., Aich P., Abrahamsen M. S., Potter A., Babiuk L. A., Griebel P.. ( 2008;). Establishment of fetal bovine intestinal epithelial cell cultures susceptible to bovine rotavirus infection. . J Virol Methods 148:, 182–196. [CrossRef][PubMed]
    [Google Scholar]
  20. Khiabanian H., Holmes A. B., Kelly B. J., Gururaj M., Hripcsak G., Rabadan R.. ( 2010;). Signs of the 2009 influenza pandemic in the New York-Presbyterian Hospital electronic health records. . PLoS ONE 5:, e12658. [CrossRef][PubMed]
    [Google Scholar]
  21. Lee M. S., Hu A. Y.. ( 2012;). A cell-based backup to speed up pandemic influenza vaccine production. . Trends Microbiol 20:, 103–105. [CrossRef][PubMed]
    [Google Scholar]
  22. Maines T. R., Chen L. M., Van Hoeven N., Tumpey T. M., Blixt O., Belser J. A., Gustin K. M., Pearce M. B., Pappas C.. & other authors ( 2011;). Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses. . Virology 413:, 139–147. [CrossRef][PubMed]
    [Google Scholar]
  23. Malakhov M. P., Aschenbrenner L. M., Smee D. F., Wandersee M. K., Sidwell R. W., Gubareva L. V., Mishin V. P., Hayden F. G., Kim D. H.. & other authors ( 2006;). Sialidase fusion protein as a novel broad-spectrum inhibitor of influenza virus infection. . Antimicrob Agents Chemother 50:, 1470–1479. [CrossRef][PubMed]
    [Google Scholar]
  24. Matrosovich M., Tuzikov A., Bovin N., Gambaryan A., Klimov A., Castrucci M. R., Donatelli I., Kawaoka Y.. ( 2000;). Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. . J Virol 74:, 8502–8512. [CrossRef][PubMed]
    [Google Scholar]
  25. McCullers J. A., Saito T., Iverson A. R.. ( 2004;). Multiple genotypes of influenza B virus circulated between 1979 and 2003. . J Virol 78:, 12817–12828. [CrossRef][PubMed]
    [Google Scholar]
  26. Meroz D., Yoon S. W., Ducatez M. F., Fabrizio T. P., Webby R. J., Hertz T., Ben-Tal N.. ( 2011;). Putative amino acid determinants of the emergence of the 2009 influenza A (H1N1) virus in the human population. . Proc Natl Acad Sci U S A 108:, 13522–13527. [CrossRef][PubMed]
    [Google Scholar]
  27. Nicholls J. M., Chan R. W., Russell R. J., Air G. M., Peiris J. S.. ( 2008;). Evolving complexities of influenza virus and its receptors. . Trends Microbiol 16:, 149–157. [CrossRef][PubMed]
    [Google Scholar]
  28. Osterhaus A. D., Rimmelzwaan G. F., Martina B. E., Bestebroer T. M., Fouchier R. A.. ( 2000;). Influenza B virus in seals. . Science 288:, 1051–1053. [CrossRef][PubMed]
    [Google Scholar]
  29. Ozawa M., Basnet S., Burley L. M., Neumann G., Hatta M., Kawaoka Y.. ( 2011;). Impact of amino acid mutations in PB2, PB1-F2, and NS1 on the replication and pathogenicity of pandemic (H1N1) 2009 influenza viruses. . J Virol 85:, 4596–4601. [CrossRef][PubMed]
    [Google Scholar]
  30. Rhoads J. M., Chen W., Chu P., Berschneider H. M., Argenzio R. A., Paradiso A. M.. ( 1994;). L-glutamine and L-asparagine stimulate Na+ -H+ exchange in porcine jejunal enterocytes. . Am J Physiol 266:, G828–G838.[PubMed]
    [Google Scholar]
  31. Rimmelzwaan G. F., Boon A. C. M., Geelhoed-Mieras M. M., Voeten J. T. M., Fouchier R. A. M., Osterhaus A. D. M. E.. ( 2004;). Human airway epithelial cells present antigen to influenza virus-specific CD8+ CTL inefficiently after incubation with viral protein together with ISCOMATRIX. . Vaccine 22:, 2769–2775. [CrossRef][PubMed]
    [Google Scholar]
  32. Rogers G. N., Daniels R. S., Skehel J. J., Wiley D. C., Wang X. F., Higa H. H., Paulson J. C.. ( 1985;). Host-mediated selection of influenza virus receptor variants. Sialic acid-α2,6Gal-specific clones of A/duck/Ukraine/1/63 revert to sialic acid-α2,3Gal-specific wild type in ovo. . J Biol Chem 260:, 7362–7367.[PubMed]
    [Google Scholar]
  33. Roth B., Mohr H., Enders M., Garten W., Gregersen J. P.. ( 2012;). Isolation of influenza viruses in MDCK 33016PF cells and clearance of contaminating respiratory viruses. . Vaccine 30:, 517–522. [CrossRef][PubMed]
    [Google Scholar]
  34. Rusu D., Loret S., Peulen O., Mainil J., Dandrifosse G.. ( 2005;). Immunochemical, biomolecular and biochemical characterization of bovine epithelial intestinal primocultures. . BMC Cell Biol 6:, 42. [CrossRef][PubMed]
    [Google Scholar]
  35. Scholtissek C., Bürger H., Bachmann P. A., Hannoun C.. ( 1983;). Genetic relatedness of hemagglutinins of the H1 subtype of influenza A viruses isolated from swine and birds. . Virology 129:, 521–523. [CrossRef][PubMed]
    [Google Scholar]
  36. Shinde V., Bridges C. B., Uyeki T. M., Shu B., Balish A., Xu X., Lindstrom S., Gubareva L. V., Deyde V.. & other authors ( 2009;). Triple-reassortant swine influenza A (H1) in humans in the United States, 2005-2009. . N Engl J Med 360:, 2616–2625. [CrossRef][PubMed]
    [Google Scholar]
  37. Shinya K., Ebina M., Yamada S., Ono M., Kasai N., Kawaoka Y.. ( 2006;). Avian flu: influenza virus receptors in the human airway. . Nature 440:, 435–436. [CrossRef][PubMed]
    [Google Scholar]
  38. Sidorenko Y., Reichl U.. ( 2004;). Structured model of influenza virus replication in MDCK cells. . Biotechnol Bioeng 88:, 1–14. [CrossRef][PubMed]
    [Google Scholar]
  39. Smith G. J. D., Vijaykrishna D., Bahl J., Lycett S. J., Worobey M., Pybus O. G., Ma S. K., Cheung C. L., Raghwani J.. & other authors ( 2009;). Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. . Nature 459:, 1122–1125. [CrossRef][PubMed]
    [Google Scholar]
  40. Solórzano A., Webby R. J., Lager K. M., Janke B. H., García-Sastre A., Richt J. A.. ( 2005;). Mutations in the NS1 protein of swine influenza virus impair anti-interferon activity and confer attenuation in pigs. . J Virol 79:, 7535–7543. [CrossRef][PubMed]
    [Google Scholar]
  41. Suzuki Y., Ito T., Suzuki T., Holland R. E. Jr, Chambers T. M., Kiso M., Ishida H., Kawaoka Y.. ( 2000;). Sialic acid species as a determinant of the host range of influenza A viruses. . J Virol 74:, 11825–11831. [CrossRef][PubMed]
    [Google Scholar]
  42. Takemae N., Ruttanapumma R., Parchariyanon S., Yoneyama S., Hayashi T., Hiramatsu H., Sriwilaijaroen N., Uchida Y., Kondo S.. & other authors ( 2010;). Alterations in receptor-binding properties of swine influenza viruses of the H1 subtype after isolation in embryonated chicken eggs. . J Gen Virol 91:, 938–948. [CrossRef][PubMed]
    [Google Scholar]
  43. Trebbien R., Larsen L. E., Viuff B. M.. ( 2011;). Distribution of sialic acid receptors and influenza A virus of avian and swine origin in experimentally infected pigs. . Virol J 8:, 434. [CrossRef][PubMed]
    [Google Scholar]
  44. Wanitchang A., Kramyu J., Jongkaewwattana A.. ( 2010;). Enhancement of reverse genetics-derived swine-origin H1N1 influenza virus seed vaccine growth by inclusion of indigenous polymerase PB1 protein. . Virus Res 147:, 145–148. [CrossRef][PubMed]
    [Google Scholar]
  45. Webby R. J., Webster R. G.. ( 2003;). Are we ready for pandemic influenza?. Science 302:, 1519–1522. [CrossRef][PubMed]
    [Google Scholar]
  46. Webster R. G., Bean W. J., Gorman O. T., Chambers T. M., Kawaoka Y.. ( 1992;). Evolution and ecology of influenza A viruses. . Microbiol Rev 56:, 152–179.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.044388-0
Loading
/content/journal/jgv/10.1099/vir.0.044388-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error