1887

Abstract

We have developed a porcine intestine epithelial cell line, designated SD-PJEC for the propagation of influenza viruses. The SD-PJEC cell line is a subclone of the IPEC-J2 cell line, which was originally derived from newborn piglet jejunum. Our results demonstrate that SD-PJEC is a cell line of epithelial origin that preferentially expresses receptors of oligosaccharides with Sia2-6Gal modification. This cell line is permissive to infection with human and swine influenza A viruses and some avian influenza viruses, but poorly support the growth of human-origin influenza B viruses. Propagation of swine-origin influenza viruses in these cells results in a rapid growth rate within the first 24 h post-infection and the titres ranged from 4 to 8 log TCID ml. The SD-PJEC cell line was further tested as a potential alternative cell line to Madin–Darby canine kidney (MDCK) cells in conjunction with 293T cells for rescue of swine-origin influenza viruses using the reverse genetics system. The recombinant viruses A/swine/North Carolina/18161/02 (H1N1) and A/swine/Texas/4199-2/98 (H3N2) were rescued with virus titres of 7 and 8.25 log TCID ml, respectively. The availability of this swine-specific cell line represents a more relevant substrate for studies and growth of swine-origin influenza viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.044388-0
2012-09-01
2021-01-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/9/2008.html?itemId=/content/journal/jgv/10.1099/vir.0.044388-0&mimeType=html&fmt=ahah

References

  1. Bateman A. C., Busch M. G., Karasin A. I., Bovin N., Olsen C. W. 2008; Amino acid 226 in the hemagglutinin of H4N6 influenza virus determines binding affinity for α2,6-linked sialic acid and infectivity levels in primary swine and human respiratory epithelial cells. J Virol 82:8204–8209 [CrossRef][PubMed]
    [Google Scholar]
  2. Belser J. A., Blixt O., Chen L. M., Pappas C., Maines T. R., Van Hoeven N., Donis R., Busch J., McBride R.other authors 2008; Contemporary North American influenza H7 viruses possess human receptor specificity: implications for virus transmissibility. Proc Natl Acad Sci U S A 105:7558–7563 [CrossRef][PubMed]
    [Google Scholar]
  3. Berschneider H. M. 1989; Development of normal cultured small intestinal epithelial cell lines which transport Na and Cl. [Abstract] Gastroenterology 96:A41
    [Google Scholar]
  4. Buonagurio D. A., Nakada S., Fitch W. M., Palese P. 1986; Epidemiology of influenza C virus in man: multiple evolutionary lineages and low rate of change. Virology 153:12–21 [CrossRef][PubMed]
    [Google Scholar]
  5. Chakrabarti A. K., Vipat V. C., Mukherjee S., Singh R., Pawar S. D., Mishra A. C. 2010; Host gene expression profiling in influenza A virus-infected lung epithelial (A549) cells: a comparative analysis between highly pathogenic and modified H5N1 viruses. Virol J 7:219 [CrossRef][PubMed]
    [Google Scholar]
  6. Chutinimitkul S., Herfst S., Steel J., Lowen A. C., Ye J., van Riel D., Schrauwen E. J., Bestebroer T. M., Koel B.other authors 2010; Virulence-associated substitution D222G in the hemagglutinin of 2009 pandemic influenza A(H1N1) virus affects receptor binding. J Virol 84:11802–11813 [CrossRef][PubMed]
    [Google Scholar]
  7. Fedson D. S. 2008; NEW technologies for meeting the global demand for pandemic influenza vaccines. Biologicals 36:346–349 [CrossRef][PubMed]
    [Google Scholar]
  8. Govorkova E. A., Kodihalli S., Alymova I. V., Fanget B., Webster R. G. 1999a; Growth and immunogenicity of influenza viruses cultivated in Vero or MDCK cells and in embryonated chicken eggs. Dev Biol Stand 98:39–51, discussion 73–74[PubMed]
    [Google Scholar]
  9. Govorkova E. A., Matrosovich M. N., Tuzikov A. B., Bovin N. V., Gerdil C., Fanget B., Webster R. G. 1999b; Selection of receptor-binding variants of human influenza A and B viruses in baby hamster kidney cells. Virology 262:31–38 [CrossRef][PubMed]
    [Google Scholar]
  10. Gregersen J. P., Schmitt H. J., Trusheim H., Bröker M. 2011; Safety of MDCK cell culture-based influenza vaccines. Future Microbiol 6:143–152 [CrossRef][PubMed]
    [Google Scholar]
  11. Hatakeyama S., Sakai-Tagawa Y., Kiso M., Goto H., Kawakami C., Mitamura K., Sugaya N., Suzuki Y., Kawaoka Y. 2005; Enhanced expression of an α2,6-linked sialic acid on MDCK cells improves isolation of human influenza viruses and evaluation of their sensitivity to a neuraminidase inhibitor. J Clin Microbiol 43:4139–4146 [CrossRef][PubMed]
    [Google Scholar]
  12. Heynisch B., Frensing T., Heinze K., Seitz C., Genzel Y., Reichl U. 2010; Differential activation of host cell signalling pathways through infection with two variants of influenza A/Puerto Rico/8/34 (H1N1) in MDCK cells. Vaccine 28:8210–8218 [CrossRef][PubMed]
    [Google Scholar]
  13. Hoffmann E., Webster R. G. 2000; Unidirectional RNA polymerase I-polymerase II transcription system for the generation of influenza A virus from eight plasmids. J Gen Virol 81:2843–2847[PubMed]
    [Google Scholar]
  14. Hoffmann E., Neumann G., Hobom G., Webster R. G., Kawaoka Y. 2000; “Ambisense” approach for the generation of influenza A virus: vRNA and mRNA synthesis from one template. Virology 267:310–317 [CrossRef][PubMed]
    [Google Scholar]
  15. Hoffmann E., Krauss S., Perez D., Webby R., Webster R. G. 2002; Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine 20:3165–3170 [CrossRef][PubMed]
    [Google Scholar]
  16. Hussain A. I., Cordeiro M., Sevilla E., Liu J. 2010; Comparison of egg and high yielding MDCK cell-derived live attenuated influenza virus for commercial production of trivalent influenza vaccine: in vitro cell susceptibility and influenza virus replication kinetics in permissive and semi-permissive cells. Vaccine 28:3848–3855 [CrossRef][PubMed]
    [Google Scholar]
  17. Ito T., Couceiro J. N. S. S., Kelm S., Baum L. G., Krauss S., Castrucci M. R., Donatelli I., Kida H., Paulson J. C.other authors 1998; Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72:7367–7373[PubMed]
    [Google Scholar]
  18. Kaeffer B., Bottreau E., Velge P., Pardon P. 1993; Epithelioid and fibroblastic cell lines derived from the ileum of an adult histocompatible miniature boar (d/d haplotype) and immortalized by SV40 plasmid. Eur J Cell Biol 62:152–162[PubMed]
    [Google Scholar]
  19. Kaushik R. S., Begg A. A., Wilson H. L., Aich P., Abrahamsen M. S., Potter A., Babiuk L. A., Griebel P. 2008; Establishment of fetal bovine intestinal epithelial cell cultures susceptible to bovine rotavirus infection. J Virol Methods 148:182–196 [CrossRef][PubMed]
    [Google Scholar]
  20. Khiabanian H., Holmes A. B., Kelly B. J., Gururaj M., Hripcsak G., Rabadan R. 2010; Signs of the 2009 influenza pandemic in the New York-Presbyterian Hospital electronic health records. PLoS ONE 5:e12658 [CrossRef][PubMed]
    [Google Scholar]
  21. Lee M. S., Hu A. Y. 2012; A cell-based backup to speed up pandemic influenza vaccine production. Trends Microbiol 20:103–105 [CrossRef][PubMed]
    [Google Scholar]
  22. Maines T. R., Chen L. M., Van Hoeven N., Tumpey T. M., Blixt O., Belser J. A., Gustin K. M., Pearce M. B., Pappas C.other authors 2011; Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses. Virology 413:139–147 [CrossRef][PubMed]
    [Google Scholar]
  23. Malakhov M. P., Aschenbrenner L. M., Smee D. F., Wandersee M. K., Sidwell R. W., Gubareva L. V., Mishin V. P., Hayden F. G., Kim D. H.other authors 2006; Sialidase fusion protein as a novel broad-spectrum inhibitor of influenza virus infection. Antimicrob Agents Chemother 50:1470–1479 [CrossRef][PubMed]
    [Google Scholar]
  24. Matrosovich M., Tuzikov A., Bovin N., Gambaryan A., Klimov A., Castrucci M. R., Donatelli I., Kawaoka Y. 2000; Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol 74:8502–8512 [CrossRef][PubMed]
    [Google Scholar]
  25. McCullers J. A., Saito T., Iverson A. R. 2004; Multiple genotypes of influenza B virus circulated between 1979 and 2003. J Virol 78:12817–12828 [CrossRef][PubMed]
    [Google Scholar]
  26. Meroz D., Yoon S. W., Ducatez M. F., Fabrizio T. P., Webby R. J., Hertz T., Ben-Tal N. 2011; Putative amino acid determinants of the emergence of the 2009 influenza A (H1N1) virus in the human population. Proc Natl Acad Sci U S A 108:13522–13527 [CrossRef][PubMed]
    [Google Scholar]
  27. Nicholls J. M., Chan R. W., Russell R. J., Air G. M., Peiris J. S. 2008; Evolving complexities of influenza virus and its receptors. Trends Microbiol 16:149–157 [CrossRef][PubMed]
    [Google Scholar]
  28. Osterhaus A. D., Rimmelzwaan G. F., Martina B. E., Bestebroer T. M., Fouchier R. A. 2000; Influenza B virus in seals. Science 288:1051–1053 [CrossRef][PubMed]
    [Google Scholar]
  29. Ozawa M., Basnet S., Burley L. M., Neumann G., Hatta M., Kawaoka Y. 2011; Impact of amino acid mutations in PB2, PB1-F2, and NS1 on the replication and pathogenicity of pandemic (H1N1) 2009 influenza viruses. J Virol 85:4596–4601 [CrossRef][PubMed]
    [Google Scholar]
  30. Rhoads J. M., Chen W., Chu P., Berschneider H. M., Argenzio R. A., Paradiso A. M. 1994; L-glutamine and L-asparagine stimulate Na+ -H+ exchange in porcine jejunal enterocytes. Am J Physiol 266:G828–G838[PubMed]
    [Google Scholar]
  31. Rimmelzwaan G. F., Boon A. C. M., Geelhoed-Mieras M. M., Voeten J. T. M., Fouchier R. A. M., Osterhaus A. D. M. E. 2004; Human airway epithelial cells present antigen to influenza virus-specific CD8+ CTL inefficiently after incubation with viral protein together with ISCOMATRIX. Vaccine 22:2769–2775 [CrossRef][PubMed]
    [Google Scholar]
  32. Rogers G. N., Daniels R. S., Skehel J. J., Wiley D. C., Wang X. F., Higa H. H., Paulson J. C. 1985; Host-mediated selection of influenza virus receptor variants. Sialic acid-α2,6Gal-specific clones of A/duck/Ukraine/1/63 revert to sialic acid-α2,3Gal-specific wild type in ovo. J Biol Chem 260:7362–7367[PubMed]
    [Google Scholar]
  33. Roth B., Mohr H., Enders M., Garten W., Gregersen J. P. 2012; Isolation of influenza viruses in MDCK 33016PF cells and clearance of contaminating respiratory viruses. Vaccine 30:517–522 [CrossRef][PubMed]
    [Google Scholar]
  34. Rusu D., Loret S., Peulen O., Mainil J., Dandrifosse G. 2005; Immunochemical, biomolecular and biochemical characterization of bovine epithelial intestinal primocultures. BMC Cell Biol 6:42 [CrossRef][PubMed]
    [Google Scholar]
  35. Scholtissek C., Bürger H., Bachmann P. A., Hannoun C. 1983; Genetic relatedness of hemagglutinins of the H1 subtype of influenza A viruses isolated from swine and birds. Virology 129:521–523 [CrossRef][PubMed]
    [Google Scholar]
  36. Shinde V., Bridges C. B., Uyeki T. M., Shu B., Balish A., Xu X., Lindstrom S., Gubareva L. V., Deyde V.other authors 2009; Triple-reassortant swine influenza A (H1) in humans in the United States, 2005-2009. N Engl J Med 360:2616–2625 [CrossRef][PubMed]
    [Google Scholar]
  37. Shinya K., Ebina M., Yamada S., Ono M., Kasai N., Kawaoka Y. 2006; Avian flu: influenza virus receptors in the human airway. Nature 440:435–436 [CrossRef][PubMed]
    [Google Scholar]
  38. Sidorenko Y., Reichl U. 2004; Structured model of influenza virus replication in MDCK cells. Biotechnol Bioeng 88:1–14 [CrossRef][PubMed]
    [Google Scholar]
  39. Smith G. J. D., Vijaykrishna D., Bahl J., Lycett S. J., Worobey M., Pybus O. G., Ma S. K., Cheung C. L., Raghwani J.other authors 2009; Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459:1122–1125 [CrossRef][PubMed]
    [Google Scholar]
  40. Solórzano A., Webby R. J., Lager K. M., Janke B. H., García-Sastre A., Richt J. A. 2005; Mutations in the NS1 protein of swine influenza virus impair anti-interferon activity and confer attenuation in pigs. J Virol 79:7535–7543 [CrossRef][PubMed]
    [Google Scholar]
  41. Suzuki Y., Ito T., Suzuki T., Holland R. E. Jr, Chambers T. M., Kiso M., Ishida H., Kawaoka Y. 2000; Sialic acid species as a determinant of the host range of influenza A viruses. J Virol 74:11825–11831 [CrossRef][PubMed]
    [Google Scholar]
  42. Takemae N., Ruttanapumma R., Parchariyanon S., Yoneyama S., Hayashi T., Hiramatsu H., Sriwilaijaroen N., Uchida Y., Kondo S.other authors 2010; Alterations in receptor-binding properties of swine influenza viruses of the H1 subtype after isolation in embryonated chicken eggs. J Gen Virol 91:938–948 [CrossRef][PubMed]
    [Google Scholar]
  43. Trebbien R., Larsen L. E., Viuff B. M. 2011; Distribution of sialic acid receptors and influenza A virus of avian and swine origin in experimentally infected pigs. Virol J 8:434 [CrossRef][PubMed]
    [Google Scholar]
  44. Wanitchang A., Kramyu J., Jongkaewwattana A. 2010; Enhancement of reverse genetics-derived swine-origin H1N1 influenza virus seed vaccine growth by inclusion of indigenous polymerase PB1 protein. Virus Res 147:145–148 [CrossRef][PubMed]
    [Google Scholar]
  45. Webby R. J., Webster R. G. 2003; Are we ready for pandemic influenza?. Science 302:1519–1522 [CrossRef][PubMed]
    [Google Scholar]
  46. Webster R. G., Bean W. J., Gorman O. T., Chambers T. M., Kawaoka Y. 1992; Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.044388-0
Loading
/content/journal/jgv/10.1099/vir.0.044388-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error