1887

Abstract

Respiratory syncytial virus (RSV) causes substantial morbidity and life-threatening lower respiratory tract disease in infants, young children and the elderly. Understanding the host response to RSV infection is critical for developing disease-intervention approaches. The role of microRNAs (miRNAs) in post-transcriptional regulation of host genes responding to RSV infection is not well understood. In this study, it was shown that RSV infection of a human alveolar epithelial cell line (A549) induced five miRNAs (let-7f, miR-24, miR-337-3p, miR-26b and miR-520a-5p) and repressed two miRNAs (miR-198 and miR-595), and showed that RSV G protein triggered let-7f expression. Luciferase–untranslated region reporters and miRNA mimics and inhibitors validated the predicted targets, which included cell-cycle genes (, and ), a chemokine gene () and the suppressor of cytokine signalling 3 gene (). Modulating let-7 family miRNA levels with miRNA mimics and inhibitors affected RSV replication, indicating that RSV modulates host miRNA expression to affect the outcome of the antiviral host response, and this was mediated in part through RSV G protein expression.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.044255-0
2012-11-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/11/2346.html?itemId=/content/journal/jgv/10.1099/vir.0.044255-0&mimeType=html&fmt=ahah

References

  1. Alvarez R. , Elbashir S. , Borland T. , Toudjarska I. , Hadwiger P. , John M. , Roehl I. , Morskaya S. S. , Martinello R. . & other authors ( 2009; ). RNA interference-mediated silencing of the respiratory syncytial virus nucleocapsid defines a potent antiviral strategy. . Antimicrob Agents Chemother 53:, 3952–3962. [CrossRef] [PubMed]
    [Google Scholar]
  2. Asirvatham A. J. , Magner W. J. , Tomasi T. B. . ( 2009; ). miRNA regulation of cytokine genes. . Cytokine 45:, 58–69. [CrossRef] [PubMed]
    [Google Scholar]
  3. Becker Y. . ( 2006; ). Respiratory syncytial virus (RSV) evades the human adaptive immune system by skewing the Th1/Th2 cytokine balance toward increased levels of Th2 cytokines and IgE, markers of allergy – a review. . Virus Genes 33:, 235–252.[PubMed]
    [Google Scholar]
  4. Berezikov E. , Chung W.-J. , Willis J. , Cuppen E. , Lai E. C. . ( 2007; ). Mammalian mirtron genes. . Mol Cell 28:, 328–336. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bossert B. , Marozin S. , Conzelmann K. K. . ( 2003; ). Nonstructural proteins NS1 and NS2 of bovine respiratory syncytial virus block activation of interferon regulatory factor 3. . J Virol 77:, 8661–8668. [CrossRef] [PubMed]
    [Google Scholar]
  6. CDCP ( 2008; ). Respiratory syncytial virus activity – United States, July 2007–December 2008. . MMWR Morb Mortal Wkly Rep 57:, 1355–1358.[PubMed]
    [Google Scholar]
  7. Dölken L. , Malterer G. , Erhard F. , Kothe S. , Friedel C. C. , Suffert G. , Marcinowski L. , Motsch N. , Barth S. , Beitzinger M. . ( 2010; ). Systematic analysis of viral and cellular microRNA targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay. . Cell Host Microbe 7:, 324–334. [CrossRef] [PubMed]
    [Google Scholar]
  8. Elliott J. , Lynch O. T. , Suessmuth Y. , Qian P. , Boyd C. R. , Burrows J. F. , Buick R. , Stevenson N. J. , Touzelet O. . & other authors ( 2007; ). Respiratory syncytial virus NS1 protein degrades STAT2 by using the elongin–cullin E3 ligase. . J Virol 81:, 3428–3436. [CrossRef] [PubMed]
    [Google Scholar]
  9. Fabian M. R. , Sonenberg N. , Filipowicz W. . ( 2010; ). Regulation of mRNA translation and stability by microRNAs. . Annu Rev Biochem 79:, 351–379. [CrossRef] [PubMed]
    [Google Scholar]
  10. Fjaerli H. O. , Bukholm G. , Skjaeret C. , Holden M. , Nakstad B. . ( 2007; ). Cord blood gene expression in infants hospitalized with respiratory syncytial virus bronchiolitis. . J Infect Dis 196:, 394–404. [CrossRef] [PubMed]
    [Google Scholar]
  11. Friedman R. C. , Farh K. K. , Burge C. B. , Bartel D. P. . ( 2009; ). Most mammalian mRNAs are conserved targets of microRNAs. . Genome Res 19:, 92–105. [CrossRef] [PubMed]
    [Google Scholar]
  12. Gibbs J. D. , Ornoff D. M. , Igo H. A. , Zeng J. Y. , Imani F. . ( 2009; ). Cell cycle arrest by transforming growth factor β1 enhances replication of respiratory syncytial virus in lung epithelial cells. . J Virol 83:, 12424–12431. [CrossRef] [PubMed]
    [Google Scholar]
  13. Griffiths-Jones S. , Saini H. K. , van Dongen S. , Enright A. J. . ( 2008; ). miRBase: tools for microRNA genomics. . Nucleic Acids Res 36: (Database issue), D154–D158. [CrossRef] [PubMed]
    [Google Scholar]
  14. Groskreutz D. J. , Monick M. M. , Yarovinsky T. O. , Powers L. S. , Quelle D. E. , Varga S. M. , Look D. C. , Hunninghake G. W. . ( 2007; ). Respiratory syncytial virus decreases p53 protein to prolong survival of airway epithelial cells. . J Immunol 179:, 2741–2747.[PubMed] [CrossRef]
    [Google Scholar]
  15. Hallak L. K. , Spillmann D. , Collins P. L. , Peeples M. E. . ( 2000; ). Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection. . J Virol 74:, 10508–10513. [CrossRef] [PubMed]
    [Google Scholar]
  16. Hamada N. , Fujita Y. , Kojima T. , Kitamoto A. , Akao Y. , Nozawa Y. , Ito M. . ( 2012; ). MicroRNA expression profiling of NGF-treated PC12 cells revealed a critical role for miR-221 in neuronal differentiation. . Neurochem Int 60:, 743–750. [CrossRef] [PubMed]
    [Google Scholar]
  17. Harcourt J. , Alvarez R. , Jones L. P. , Henderson C. , Anderson L. J. , Tripp R. A. . ( 2006; ). Respiratory syncytial virus G protein and G protein CX3C motif adversely affect CX3CR1+ T cell responses. . J Immunol 176:, 1600–1608.[PubMed] [CrossRef]
    [Google Scholar]
  18. Hedvat C. V. , Yao J. , Sokolic R. A. , Nimer S. D. . ( 2004; ). Myeloid ELF1-like factor is a potent activator of interleukin-8 expression in hematopoietic cells. . J Biol Chem 279:, 6395–6400. [CrossRef] [PubMed]
    [Google Scholar]
  19. Huang Y.-C. , Li Z. , Hyseni X. , Schmitt M. , Devlin R. B. , Karoly E. D. , Soukup J. M. . ( 2008; ). Identification of gene biomarkers for respiratory syncytial virus infection in a bronchial epithelial cell line. . Genomic Med 2:, 113–125. [CrossRef] [PubMed]
    [Google Scholar]
  20. Janssen R. , Pennings J. , Hodemaekers H. , Buisman A. , van Oosten M. , de Rond L. , Oztürk K. , Dormans J. , Kimman T. , Hoebee B. . ( 2007; ). Host transcription profiles upon primary respiratory syncytial virus infection. . J Virol 81:, 5958–5967. [CrossRef] [PubMed]
    [Google Scholar]
  21. Johnson T. R. , Graham B. S. . ( 2004; ). Contribution of respiratory syncytial virus G antigenicity to vaccine-enhanced illness and the implications for severe disease during primary respiratory syncytial virus infection. . Pediatr Infect Dis J 23: (Suppl.), S46–S57. [CrossRef] [PubMed]
    [Google Scholar]
  22. Johnson C. D. , Esquela-Kerscher A. , Stefani G. , Byrom M. , Kelnar K. , Ovcharenko D. , Wilson M. , Wang X. , Shelton J. . & other authors ( 2007; ). The let-7 microRNA represses cell proliferation pathways in human cells. . Cancer Res 67:, 7713–7722. [CrossRef] [PubMed]
    [Google Scholar]
  23. Jopling C. L. , Norman K. L. , Sarnow P. . ( 2006; ). Positive and negative modulation of viral and cellular mRNAs by liver-specific microRNA miR-122. . Cold Spring Harb Symp Quant Biol 71:, 369–376. [CrossRef] [PubMed]
    [Google Scholar]
  24. Krek A. , Grün D. , Poy M. N. , Wolf R. , Rosenberg L. , Epstein E. J. , MacMenamin P. , da Piedade I. , Gunsalus K. C. . & other authors ( 2005; ). Combinatorial microRNA target predictions. . Nat Genet 37:, 495–500. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kurt-Jones E. A. , Popova L. , Kwinn L. , Haynes L. M. , Jones L. P. , Tripp R. A. , Walsh E. E. , Freeman M. W. , Golenbock D. T. . & other authors ( 2000; ). Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. . Nat Immunol 1:, 398–401. [CrossRef] [PubMed]
    [Google Scholar]
  26. Lagos D. , Pollara G. , Henderson S. , Gratrix F. , Fabani M. , Milne R. S. , Gotch F. , Boshoff C. . ( 2010; ). miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator. . Nat Cell Biol 12:, 513–519. [CrossRef] [PubMed]
    [Google Scholar]
  27. Landgraf P. , Rusu M. , Sheridan R. , Sewer A. , Iovino N. , Aravin A. , Pfeffer S. , Rice A. , Kamphorst A. O. . & other authors ( 2007; ). A mammalian microRNA expression atlas based on small RNA library sequencing. . Cell 129:, 1401–1414. [CrossRef] [PubMed]
    [Google Scholar]
  28. Lewis B. P. , Burge C. B. , Bartel D. P. . ( 2005; ). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. . Cell 120:, 15–20. [CrossRef] [PubMed]
    [Google Scholar]
  29. Li X.-Q. , Fu Z. F. , Alvarez R. , Henderson C. , Tripp R. A. . ( 2006; ). Respiratory syncytial virus (RSV) infects neuronal cells and processes that innervate the lung by a process involving RSV G protein. . J Virol 80:, 537–540. [CrossRef] [PubMed]
    [Google Scholar]
  30. Li Q. , Brass A. L. , Ng A. , Hu Z. , Xavier R. J. , Liang T. J. , Elledge S. J. . ( 2009; ). A genome-wide genetic screen for host factors required for hepatitis C virus propagation. . Proc Natl Acad Sci U S A 106:, 16410–16415. [CrossRef] [PubMed]
    [Google Scholar]
  31. Lindquist M. E. , Lifland A. W. , Utley T. J. , Santangelo P. J. , Crowe J. E. Jr . ( 2010; ). Respiratory syncytial virus induces host RNA stress granules to facilitate viral replication. . J Virol 84:, 12274–12284. [CrossRef] [PubMed]
    [Google Scholar]
  32. Lindquist M. E. , Mainou B. A. , Dermody T. S. , Crowe J. E. Jr . ( 2011; ). Activation of protein kinase R is required for induction of stress granules by respiratory syncytial virus but dispensable for viral replication. . Virology 413:, 103–110. [CrossRef] [PubMed]
    [Google Scholar]
  33. Lo M. S. , Brazas R. M. , Holtzman M. J. . ( 2005; ). Respiratory syncytial virus nonstructural proteins NS1 and NS2 mediate inhibition of Stat2 expression and alpha/beta interferon responsiveness. . J Virol 79:, 9315–9319. [CrossRef] [PubMed]
    [Google Scholar]
  34. Maddika S. , Chen J. . ( 2009; ). Protein kinase DYRK2 is a scaffold that facilitates assembly of an E3 ligase. . Nat Cell Biol 11:, 409–419. [CrossRef] [PubMed]
    [Google Scholar]
  35. Martínez I. , Lombardía L. , García-Barreno B. , Domínguez O. , Melero J. A. . ( 2007; ). Distinct gene subsets are induced at different time points after human respiratory syncytial virus infection of A549 cells. . J Gen Virol 88:, 570–581. [CrossRef] [PubMed]
    [Google Scholar]
  36. Meliopoulos V. A. , Andersen L. E. , Birrer K. F. , Simpson K. J. , Lowenthal J. W. , Bean A. G. , Stambas J. , Stewart C. R. , Tompkins S. M. . & other authors ( 2012; ). Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens. . FASEB J 26:, 1372–1386. [CrossRef] [PubMed]
    [Google Scholar]
  37. Mohapatra S. , Park S. J. , Boyapalle S. , Pastey M. K. , Graham B. S. , Blanck G. . ( 2009; ). Human respiratory syncytial virus reduces the number of cells in S-phase and increases GADD153 expression in HEp-2 cells. . Acta Virol 53:, 207–211. [CrossRef] [PubMed]
    [Google Scholar]
  38. Moore E. C. , Barber J. , Tripp R. A. . ( 2008; ). Respiratory syncytial virus (RSV) attachment and nonstructural proteins modify the type I interferon response associated with suppressor of cytokine signaling (SOCS) proteins and IFN-stimulated gene-15 (ISG15). . Virol J 5:, 116. [CrossRef] [PubMed]
    [Google Scholar]
  39. Morlando M. , Ballarino M. , Gromak N. , Pagano F. , Bozzoni I. , Proudfoot N. J. . ( 2008; ). Primary microRNA transcripts are processed co-transcriptionally. . Nat Struct Mol Biol 15:, 902–909. [CrossRef] [PubMed]
    [Google Scholar]
  40. Munday D. C. , Emmott E. , Surtees R. , Lardeau C. H. , Wu W. , Duprex W. P. , Dove B. K. , Barr J. N. , Hiscox J. A. . ( 2010; ). Quantitative proteomic analysis of A549 cells infected with human respiratory syncytial virus. . Mol Cell Proteomics 9:, 2438–2459. [CrossRef] [PubMed]
    [Google Scholar]
  41. Murawski M. R. , Bowen G. N. , Cerny A. M. , Anderson L. J. , Haynes L. M. , Tripp R. A. , Kurt-Jones E. A. , Finberg R. W. . ( 2009; ). Respiratory syncytial virus activates innate immunity through Toll-like receptor 2. . J Virol 83:, 1492–1500. [CrossRef] [PubMed]
    [Google Scholar]
  42. O’Connell R. M. , Taganov K. D. , Boldin M. P. , Cheng G. , Baltimore D. . ( 2007; ). MicroRNA-155 is induced during the macrophage inflammatory response. . Proc Natl Acad Sci U S A 104:, 1604–1609. [CrossRef] [PubMed]
    [Google Scholar]
  43. Oshansky C. M. , Krunkosky T. M. , Barber J. , Jones L. P. , Tripp R. A. . ( 2009a; ). Respiratory syncytial virus proteins modulate suppressors of cytokine signaling 1 and 3 and the type I interferon response to infection by a Toll-like receptor pathway. . Viral Immunol 22:, 147–161. [CrossRef] [PubMed]
    [Google Scholar]
  44. Oshansky C. M. , Zhang W. , Moore E. , Tripp R. A. . ( 2009b; ). The host response and molecular pathogenesis associated with respiratory syncytial virus infection. . Future Microbiol 4:, 279–297. [CrossRef] [PubMed]
    [Google Scholar]
  45. Othumpangat S. , Gibson L. F. , Samsell L. , Piedimonte G. . ( 2009; ). NGF is an essential survival factor for bronchial epithelial cells during respiratory syncytial virus infection. . PLoS ONE 4:, e6444. [CrossRef] [PubMed]
    [Google Scholar]
  46. Othumpangat S. , Walton C. , Piedimonte G. . ( 2012; ). MicroRNA-221 modulates RSV replication in human bronchial epithelium by targeting NGF expression. . PLoS ONE 7:, e30030. [CrossRef] [PubMed]
    [Google Scholar]
  47. Panda D. , Das A. , Dinh P. X. , Subramaniam S. , Nayak D. , Barrows N. J. , Pearson J. L. , Thompson J. , Kelly D. L. . & other authors ( 2011; ). RNAi screening reveals requirement for host cell secretory pathway in infection by diverse families of negative-strand RNA viruses. . Proc Natl Acad Sci U S A 108:, 19036–19041. [CrossRef] [PubMed]
    [Google Scholar]
  48. Roberts S. R. , Lichtenstein D. , Ball L. A. , Wertz G. W. . ( 1994; ). The membrane-associated and secreted forms of the respiratory syncytial virus attachment glycoprotein G are synthesized from alternative initiation codons. . J Virol 68:, 4538–4546.[PubMed]
    [Google Scholar]
  49. Roberts A. P. , Lewis A. P. , Jopling C. L. . ( 2011; ). miR-122 activates hepatitis C virus translation by a specialized mechanism requiring particular RNA components. . Nucleic Acids Res 39:, 7716–7729. [CrossRef] [PubMed]
    [Google Scholar]
  50. Selbach M. , Schwanhäusser B. , Thierfelder N. , Fang Z. , Khanin R. , Rajewsky N. . ( 2008; ). Widespread changes in protein synthesis induced by microRNAs. . Nature 455:, 58–63. [CrossRef] [PubMed]
    [Google Scholar]
  51. Spann K. M. , Tran K. C. , Collins P. L. . ( 2005; ). Effects of nonstructural proteins NS1 and NS2 of human respiratory syncytial virus on interferon regulatory factor 3, NF-κB, and proinflammatory cytokines. . J Virol 79:, 5353–5362. [CrossRef] [PubMed]
    [Google Scholar]
  52. Taganov K. D. , Boldin M. P. , Chang K.-J. , Baltimore D. . ( 2006; ). NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. . Proc Natl Acad Sci U S A 103:, 12481–12486. [CrossRef] [PubMed]
    [Google Scholar]
  53. Taira N. , Nihira K. , Yamaguchi T. , Miki Y. , Yoshida K. . ( 2007; ). DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. . Mol Cell 25:, 725–738. [CrossRef] [PubMed]
    [Google Scholar]
  54. Taura M. , Suico M. A. , Fukuda R. , Koga T. , Shuto T. , Sato T. , Morino-Koga S. , Okada S. , Kai H. . ( 2011; ). MEF/ELF4 transactivation by E2F1 is inhibited by p53. . Nucleic Acids Res 39:, 76–88. [CrossRef] [PubMed]
    [Google Scholar]
  55. Tayyari F. , Marchant D. , Moraes T. J. , Duan W. , Mastrangelo P. , Hegele R. G. . ( 2011; ). Identification of nucleolin as a cellular receptor for human respiratory syncytial virus. . Nat Med 17:, 1132–1135. [CrossRef] [PubMed]
    [Google Scholar]
  56. Terasawa K. , Ichimura A. , Sato F. , Shimizu K. , Tsujimoto G. . ( 2009; ). Sustained activation of ERK1/2 by NGF induces microRNA-221 and 222 in PC12 cells. . FEBS J 276:, 3269–3276. [CrossRef] [PubMed]
    [Google Scholar]
  57. Triboulet R. , Mari B. , Lin Y.-L. , Chable-Bessia C. , Bennasser Y. , Lebrigand K. , Cardinaud B. , Maurin T. , Barbry P. . & other authors ( 2007; ). Suppression of microRNA-silencing pathway by HIV-1 during virus replication. . Science 315:, 1579–1582. [CrossRef] [PubMed]
    [Google Scholar]
  58. Tripp R. A. , Moore D. , Jones L. , Sullender W. , Winter J. , Anderson L. J. . ( 1999; ). Respiratory syncytial virus G and/or SH protein alters Th1 cytokines, natural killer cells, and neutrophils responding to pulmonary infection in BALB/c mice. . J Virol 73:, 7099–7107.[PubMed]
    [Google Scholar]
  59. Tripp R. A. , Jones L. , Anderson L. J. . ( 2000a; ). Respiratory syncytial virus G and/or SH glycoproteins modify CC and CXC chemokine mRNA expression in the BALB/c mouse. . J Virol 74:, 6227–6229. [CrossRef] [PubMed]
    [Google Scholar]
  60. Tripp R. A. , Moore D. , Winter J. , Anderson L. J. . ( 2000b; ). Respiratory syncytial virus infection and G and/or SH protein expression contribute to substance P, which mediates inflammation and enhanced pulmonary disease in BALB/c mice. . J Virol 74:, 1614–1622. [CrossRef] [PubMed]
    [Google Scholar]
  61. Tripp R. A. , Jones L. P. , Haynes L. M. , Zheng H. , Murphy P. M. , Anderson L. J. . ( 2001; ). CX3C chemokine mimicry by respiratory syncytial virus G glycoprotein. . Nat Immunol 2:, 732–738. [CrossRef] [PubMed]
    [Google Scholar]
  62. Varga S. M. , Wissinger E. L. , Braciale T. J. . ( 2000; ). The attachment (G) glycoprotein of respiratory syncytial virus contains a single immunodominant epitope that elicits both Th1 and Th2 CD4+ T cell responses. . J Immunol 165:, 6487–6495.[PubMed] [CrossRef]
    [Google Scholar]
  63. Vermeulen A. , Robertson B. , Dalby A. B. , Marshall W. S. , Karpilow J. , Leake D. , Khvorova A. , Baskerville S. . ( 2007; ). Double-stranded regions are essential design components of potent inhibitors of RISC function. . RNA 13:, 723–730. [CrossRef] [PubMed]
    [Google Scholar]
  64. Wu W. , Munday D. C. , Howell G. , Platt G. , Barr J. N. , Hiscox J. A. . ( 2011; ). Characterization of the interaction between human respiratory syncytial virus and the cell cycle in continuous cell culture and primary human airway epithelial cells. . J Virol 85:, 10300–10309. [CrossRef] [PubMed]
    [Google Scholar]
  65. Zhang C. , Zhang J. , Zhang A. , Wang Y. , Han L. , You Y. , Pu P. , Kang C. . ( 2010a; ). PUMA is a novel target of miR-221/222 in human epithelial cancers. . Int J Oncol 37:, 1621–1626.[PubMed] [CrossRef]
    [Google Scholar]
  66. Zhang J. , Han L. , Ge Y. , Zhou X. , Zhang A. , Zhang C. , Zhong Y. , You Y. , Pu P. , Kang C. . ( 2010b; ). miR-221/222 promote malignant progression of glioma through activation of the Akt pathway. . Int J Oncol 36:, 913–920.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.044255-0
Loading
/content/journal/jgv/10.1099/vir.0.044255-0
Loading

Data & Media loading...

Supplements

Supplementary Tables S2 and S3 

PDF

Supplementary Table S1 

EXCEL

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error