1887

Abstract

Toll-like receptor 7 (TLR7) recognizes guanidine-rich viral ssRNA and is an important mediator of peripheral immune responses to several ssRNA viruses. However, the role that TLR7 plays in regulating the innate immune response to ssRNA virus infections in specific organs such as the central nervous system (CNS) is not as clear. This study examined the influence of TLR7 on the neurovirulence of Langat virus (LGTV), a ssRNA tick-borne flavivirus. TLR7 deficiency did not substantially alter the onset or incidence of LGTV-induced clinical disease; however, it did significantly affect virus levels in the CNS with a log increase in virus titres in brain tissue from TLR7-deficient mice. This difference in virus load was also observed following intracranial inoculation, indicating a direct effect of TLR7 deficiency on regulating virus replication in the brain. LGTV-induced type I interferon responses in the CNS were not dependent on TLR7, being higher in TLR7-deficient mice compared with wild-type controls. In contrast, induction of pro-inflammatory cytokines including tumour necrosis factor, CCL3, CCL4 and CXCL13 were dependent on TLR7. Thus, although TLR7 is not essential in controlling LGTV pathogenesis, it is important in controlling virus infection in neurons in the CNS, possibly by regulating neuroinflammatory responses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.043984-0
2013-02-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/2/336.html?itemId=/content/journal/jgv/10.1099/vir.0.043984-0&mimeType=html&fmt=ahah

References

  1. Best S. M., Morris K. L., Shannon J. G., Robertson S. J., Mitzel D. N., Park G. S., Boer E., Wolfinbarger J. B., Bloom M. E. 2005; Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J Virol 79:12828–12839 [View Article][PubMed]
    [Google Scholar]
  2. Binder G. K., Griffin D. E. 2001; Interferon-γ-mediated site-specific clearance of alphavirus from CNS neurons. Science 293:303–306 [View Article][PubMed]
    [Google Scholar]
  3. Butchi N. B., Pourciau S., Du M., Morgan T. W., Peterson K. E. 2008; Analysis of the neuroinflammatory response to TLR7 stimulation in the brain: comparison of multiple TLR7 and/or TLR8 agonists. J Immunol 180:7604–7612[PubMed] [CrossRef]
    [Google Scholar]
  4. Butchi N. B., Du M., Peterson K. E. 2010; Interactions between TLR7 and TLR9 agonists and receptors regulate innate immune responses by astrocytes and microglia. Glia 58:650–664[PubMed]
    [Google Scholar]
  5. Butchi N. B., Woods T., Du M., Morgan T. W., Peterson K. E. 2011; TLR7 and TLR9 trigger distinct neuroinflammatory responses in the CNS. Am J Pathol 179:783–794 [View Article][PubMed]
    [Google Scholar]
  6. Charlier N., De Clercq E., Neyts J. 2006; Mouse and hamster models for the study of therapy against flavivirus infections. Novartis Found Symp 277:218–232 [View Article][PubMed]
    [Google Scholar]
  7. Cheeran M. C., Hu S., Yager S. L., Gekker G., Peterson P. K., Lokensgard J. R. 2001; Cytomegalovirus induces cytokine and chemokine production differentially in microglia and astrocytes: antiviral implications. J Neurovirol 7:135–147 [View Article][PubMed]
    [Google Scholar]
  8. Cheeran M. C., Hu S., Sheng W. S., Rashid A., Peterson P. K., Lokensgard J. R. 2005; Differential responses of human brain cells to West Nile virus infection. J Neurovirol 11:512–524 [View Article][PubMed]
    [Google Scholar]
  9. D’Aversa T. G., Yu K. O., Berman J. W. 2004; Expression of chemokines by human fetal microglia after treatment with the human immunodeficiency virus type 1 protein Tat. J Neurovirol 10:86–97 [View Article][PubMed]
    [Google Scholar]
  10. Daffis S., Samuel M. A., Suthar M. S., Gale M. Jr, Diamond M. S. 2008; Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol 82:10349–10358 [View Article][PubMed]
    [Google Scholar]
  11. Daffis S., Szretter K. J., Schriewer J., Li J., Youn S., Errett J., Lin T.-Y., Schneller S., Zust R. other authors 2010; 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468:452–456 [View Article][PubMed]
    [Google Scholar]
  12. Denk H., Kovac W. 1969; Neuropathology of encephalomyelitis caused by Langat virus in the white mouse. Acta Neuropathol 12:158–172 (in German) [View Article][PubMed]
    [Google Scholar]
  13. Du M., Butchi N. B., Woods T., Morgan T. W., Peterson K. E. 2010; Neuropeptide Y has a protective role during murine retrovirus-induced neurological disease. J Virol 84:11076–11088 [View Article][PubMed]
    [Google Scholar]
  14. Fredericksen B. L., Keller B. C., Fornek J., Katze M. G., Gale M. Jr 2008; Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. J Virol 82:609–616 [View Article][PubMed]
    [Google Scholar]
  15. Gritsun T. S., Lashkevich V. A., Gould E. A. 2003; Tick-borne encephalitis. Antiviral Res 57:129–146 [View Article][PubMed]
    [Google Scholar]
  16. Kuno G., Chang G.-J. J., Tsuchiya K. R., Karabatsos N., Cropp C. B. 1998; Phylogeny of the genus Flavivirus . J Virol 72:73–83[PubMed]
    [Google Scholar]
  17. Laurent-Rolle M., Boer E. F., Lubick K. J., Wolfinbarger J. B., Carmody A. B., Rockx B., Liu W., Ashour J., Shupert W. L. other authors 2010; The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling. J Virol 84:3503–3515 [View Article][PubMed]
    [Google Scholar]
  18. Lewis S. D., Butchi N. B., Khaleduzzaman M., Morgan T. W., Du M., Pourciau S., Baker D. G., Akira S., Peterson K. E. 2008; Toll-like receptor 7 is not necessary for retroviral neuropathogenesis but does contribute to virus-induced neuroinflammation. J Neurovirol 14:492–502 [View Article][PubMed]
    [Google Scholar]
  19. Liu W. J., Wang X. J., Clark D. C., Lobigs M., Hall R. A., Khromykh A. A. 2006; A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. J Virol 80:2396–2404 [View Article][PubMed]
    [Google Scholar]
  20. Lokensgard J. R., Hu S., Sheng W., vanOijen M., Cox D., Cheeran M. C., Peterson P. K. 2001; Robust expression of TNFa, IL-1β, RANTES, and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus. J Neurovirol 7:208–219 [View Article][PubMed]
    [Google Scholar]
  21. Mack C. L., Vanderlugt-Castaneda C. L., Neville K. L., Miller S. D. 2003; Microglia are activated to become competent antigen presenting and effector cells in the inflammatory environment of the Theiler’s virus model of multiple sclerosis. J Neuroimmunol 144:68–79 [View Article][PubMed]
    [Google Scholar]
  22. Mandl C. W. 2005; Steps of the tick-borne encephalitis virus replication cycle that affect neuropathogenesis. Virus Res 111:161–174 [View Article][PubMed]
    [Google Scholar]
  23. Maximova O. A., Ward J. M., Asher D. M., St. Claire M., Finneyfrock B. W., Speicher J. M., Murphy B. R., Pletnev A. G. 2008; Comparative neuropathogenesis and neurovirulence of attenuated flaviviruses in nonhuman primates. J Virol 82:5255–5268 [View Article][PubMed]
    [Google Scholar]
  24. Permar S. R., Klumpp S. A., Mansfield K. G., Kim W. K., Gorgone D. A., Lifton M. A., Williams K. C., Schmitz J. E., Reimann K. A. other authors 2003; Role of CD8+ lymphocytes in control and clearance of measles virus infection of rhesus monkeys. J Virol 77:4396–4400 [View Article][PubMed]
    [Google Scholar]
  25. Pletnev A. G., Men R. 1998; Attenuation of the Langat tick-borne flavivirus by chimerization with mosquito-borne flavivirus dengue type 4. Proc Natl Acad Sci U S A 95:1746–1751 [View Article][PubMed]
    [Google Scholar]
  26. Rowell J. F., Griffin D. E. 2002; Contribution of T cells to mortality in neurovirulent Sindbis virus encephalomyelitis. J Neuroimmunol 127:106–114 [View Article][PubMed]
    [Google Scholar]
  27. Růžek D., Salát J., Singh S. K., Kopecký J. 2011; Breakdown of the blood–brain barrier during tick-borne encephalitis in mice is not dependent on CD8+ T-cells. PLoS ONE 6:e20472 [View Article][PubMed]
    [Google Scholar]
  28. Samuel M. A., Whitby K., Keller B. C., Marri A., Barchet W., Williams B. R., Silverman R. H., Gale M. Jr, Diamond M. S. 2006; PKR and RNase L contribute to protection against lethal West Nile virus infection by controlling early viral spread in the periphery and replication in neurons. J Virol 80:7009–7019 [View Article][PubMed]
    [Google Scholar]
  29. Semenov B. F., Vargin V. V., Ozherelkov S. V. 1981; [Effect of the Tahyña virus on Langat virus persistence in the central nervous system of the mouse]. Vopr Virusol 6:724–728 (in Russian) [PubMed]
    [Google Scholar]
  30. Sitati E., McCandless E. E., Klein R. S., Diamond M. S. 2007; CD40–CD40 ligand interactions promote trafficking of CD8+ T cells into the brain and protection against West Nile virus encephalitis. J Virol 81:9801–9811 [View Article][PubMed]
    [Google Scholar]
  31. Sobottka B., Harrer M. D., Ziegler U., Fischer K., Wiendl H., Hünig T., Becher B., Goebels N. 2009; Collateral bystander damage by myelin-directed CD8+ T cells causes axonal loss. Am J Pathol 175:1160–1166 [View Article][PubMed]
    [Google Scholar]
  32. Sopper S., Demuth M., Stahl-Hennig C., Hunsmann G., Plesker R., Coulibaly C., Czub S., Ceska M., Koutsilieri E. other authors 1996; The effect of simian immunodeficiency virus infection in vitro and in vivo on the cytokine production of isolated microglia and peripheral macrophages from rhesus monkey. Virology 220:320–329 [View Article][PubMed]
    [Google Scholar]
  33. Szretter K. J., Samuel M. A., Gilfillan S., Fuchs A., Colonna M., Diamond M. S. 2009; The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts West Nile Virus pathogenesis. J Virol 83:9329–9338 [View Article][PubMed]
    [Google Scholar]
  34. Tigabu B., Juelich T., Holbrook M. R. 2010; Comparative analysis of immune responses to Russian spring–summer encephalitis and Omsk hemorrhagic fever viruses in mouse models. Virology 408:57–63 [View Article][PubMed]
    [Google Scholar]
  35. Town T., Bai F., Wang T., Kaplan A. T., Qian F., Montgomery R. R., Anderson J. F., Flavell R. A., Fikrig E. 2009; Toll-like receptor 7 mitigates lethal West Nile encephalitis via interleukin 23-dependent immune cell infiltration and homing. Immunity 30:242–253 [View Article][PubMed]
    [Google Scholar]
  36. Wang T., Town T., Alexopoulou L., Anderson J. F., Fikrig E., Flavell R. A. 2004; Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10:1366–1373 [View Article][PubMed]
    [Google Scholar]
  37. Welte T., Reagan K., Fang H., Machain-Williams C., Zheng X., Mendell N., Chang G. J., Wu P., Blair C. D., Wang T. 2009; Toll-like receptor 7-induced immune response to cutaneous West Nile virus infection. J Gen Virol 90:2660–2668 [View Article][PubMed]
    [Google Scholar]
  38. Zhou S., Halle A., Kurt-Jones E. A., Cerny A. M., Porpiglia E., Rogers M., Golenbock D. T., Finberg R. W. 2008; Lymphocytic choriomeningitis virus (LCMV) infection of CNS glial cells results in TLR2-MyD88/Mal-dependent inflammatory responses. J Neuroimmunol 194:70–82 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.043984-0
Loading
/content/journal/jgv/10.1099/vir.0.043984-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error