1887

Abstract

Vaccinia virus (VACV) spreads across cell monolayers fourfold faster than predicted from its replication kinetics. Early after infection, infected cells repulse some superinfecting extracellular enveloped virus (EEV) particles by the formation of actin tails from the cell surface, thereby causing accelerated spread to uninfected cells. This strategy requires the expression of two viral proteins, A33 and A36, on the surface of infected cells and upon contact with EEV this complex induces actin polymerization. Here we have studied this phenomenon further and investigated whether A33 and A36 expression in cell lines causes an increase in VACV plaque size, whether these proteins are able to block superinfection by EEV, and which protein(s) on the EEV surface are required to initiate the formation of actin tails from infected cells. Data presented show that VACV plaque size was not increased by expression of A33 and A36, and these proteins did not block entry of the majority of EEV binding to these cells. In contrast, expression of proteins A56 and K2 inhibited entry of both EEV and intracellular mature virus. Lastly, VACV protein B5 was required on EEV to induce the formation of actin tails at the surface of cells expressing A33 and A36, and B5 short consensus repeat 4 is critical for this induction.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.043943-0
2012-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/9/1876.html?itemId=/content/journal/jgv/10.1099/vir.0.043943-0&mimeType=html&fmt=ahah

References

  1. Alcamí A., Smith G. L.. ( 1992;). A soluble receptor for interleukin-1β encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. . Cell 71:, 153–167. [CrossRef][PubMed]
    [Google Scholar]
  2. Blasco R., Moss B.. ( 1991;). Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37,000-dalton outer envelope protein. . J Virol 65:, 5910–5920.[PubMed]
    [Google Scholar]
  3. Blasco R., Sisler J. R., Moss B.. ( 1993;). Dissociation of progeny vaccinia virus from the cell membrane is regulated by a viral envelope glycoprotein: effect of a point mutation in the lectin homology domain of the A34R gene. . J Virol 67:, 3319–3325.[PubMed]
    [Google Scholar]
  4. Breiman A., Smith G. L.. ( 2010;). Vaccinia virus B5 protein affects the glycosylation, localization and stability of the A34 protein. . J Gen Virol 91:, 1823–1827. [CrossRef][PubMed]
    [Google Scholar]
  5. Condit R. C., Moussatche N., Traktman P.. ( 2006;). In a nutshell: structure and assembly of the vaccinia virion. . Adv Virus Res 66:, 31–124. [CrossRef][PubMed]
    [Google Scholar]
  6. Cudmore S., Cossart P., Griffiths G., Way M.. ( 1995;). Actin-based motility of vaccinia virus. . Nature 378:, 636–638. [CrossRef][PubMed]
    [Google Scholar]
  7. DeHaven B. C., Girgis N. M., Xiao Y., Hudson P. N., Olson V. A., Damon I. K., Isaacs S. N.. ( 2010;). Poxvirus complement control proteins are expressed on the cell surface through an intermolecular disulfide bridge with the viral A56 protein. . J Virol 84:, 11245–11254. [CrossRef][PubMed]
    [Google Scholar]
  8. DeHaven B. C., Gupta K., Isaacs S. N.. ( 2011;). The vaccinia virus A56 protein: a multifunctional transmembrane glycoprotein that anchors two secreted viral proteins. . J Gen Virol 92:, 1971–1980. [CrossRef][PubMed]
    [Google Scholar]
  9. Demaison C., Parsley K., Brouns G., Scherr M., Battmer K., Kinnon C., Grez M., Thrasher A. J.. ( 2002;). High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. . Hum Gene Ther 13:, 803–813. [CrossRef][PubMed]
    [Google Scholar]
  10. Doceul V., Hollinshead M., van der Linden L., Smith G. L.. ( 2010;). Repulsion of superinfecting virions: a mechanism for rapid virus spread. . Science 327:, 873–876. [CrossRef][PubMed]
    [Google Scholar]
  11. Drexler I., Heller K., Wahren B., Erfle V., Sutter G.. ( 1998;). Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells. . J Gen Virol 79:, 347–352.[PubMed]
    [Google Scholar]
  12. Duncan S. A., Smith G. L.. ( 1992;). Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress. . J Virol 66:, 1610–1621.[PubMed]
    [Google Scholar]
  13. Earley A. K., Chan W. M., Ward B. M.. ( 2008;). The vaccinia virus B5 protein requires A34 for efficient intracellular trafficking from the endoplasmic reticulum to the site of wrapping and incorporation into progeny virions. . J Virol 82:, 2161–2169. [CrossRef][PubMed]
    [Google Scholar]
  14. Engelstad M., Smith G. L.. ( 1993;). The vaccinia virus 42-kDa envelope protein is required for the envelopment and egress of extracellular virus and for virus virulence. . Virology 194:, 627–637. [CrossRef][PubMed]
    [Google Scholar]
  15. Engelstad M., Howard S. T., Smith G. L.. ( 1992;). A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. . Virology 188:, 801–810. [CrossRef][PubMed]
    [Google Scholar]
  16. Fogg C., Lustig S., Whitbeck J. C., Eisenberg R. J., Cohen G. H., Moss B.. ( 2004;). Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. . J Virol 78:, 10230–10237. [CrossRef][PubMed]
    [Google Scholar]
  17. Frischknecht F., Moreau V., Röttger S., Gonfloni S., Reckmann I., Superti-Furga G., Way M.. ( 1999;). Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. . Nature 401:, 926–929. [CrossRef][PubMed]
    [Google Scholar]
  18. Galmiche M. C., Goenaga J., Wittek R., Rindisbacher L.. ( 1999;). Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. . Virology 254:, 71–80. [CrossRef][PubMed]
    [Google Scholar]
  19. Geada M. M., Galindo I., Lorenzo M. M., Perdiguero B., Blasco R.. ( 2001;). Movements of vaccinia virus intracellular enveloped virions with GFP tagged to the F13L envelope protein. . J Gen Virol 82:, 2747–2760.[PubMed]
    [Google Scholar]
  20. Grosenbach D. W., Hansen S. G., Hruby D. E.. ( 2000;). Identification and analysis of vaccinia virus palmitylproteins. . Virology 275:, 193–206. [CrossRef][PubMed]
    [Google Scholar]
  21. Herrera E., Lorenzo M. M., Blasco R., Isaacs S. N.. ( 1998;). Functional analysis of vaccinia virus B5R protein: essential role in virus envelopment is independent of a large portion of the extracellular domain. . J Virol 72:, 294–302.[PubMed]
    [Google Scholar]
  22. Herrero-Martínez E., Roberts K. L., Hollinshead M., Smith G. L.. ( 2005;). Vaccinia virus intracellular enveloped virions move to the cell periphery on microtubules in the absence of the A36R protein. . J Gen Virol 86:, 2961–2968. [CrossRef][PubMed]
    [Google Scholar]
  23. Hiller G., Weber K., Schneider L., Parajsz C., Jungwirth C.. ( 1979;). Interaction of assembled progeny pox viruses with the cellular cytoskeleton. . Virology 98:, 142–153. [CrossRef][PubMed]
    [Google Scholar]
  24. Hollinshead M., Vanderplasschen A., Smith G. L., Vaux D. J.. ( 1999;). Vaccinia virus intracellular mature virions contain only one lipid membrane. . J Virol 73:, 1503–1517.[PubMed]
    [Google Scholar]
  25. Hollinshead M., Rodger G., Van Eijl H., Law M., Hollinshead R., Vaux D. J., Smith G. L.. ( 2001;). Vaccinia virus utilizes microtubules for movement to the cell surface. . J Cell Biol 154:, 389–402. [CrossRef][PubMed]
    [Google Scholar]
  26. Hughes S. J., Johnston L. H., de Carlos A., Smith G. L.. ( 1991;). Vaccinia virus encodes an active thymidylate kinase that complements a cdc8 mutant of Saccharomyces cerevisiae. . J Biol Chem 266:, 20103–20109.[PubMed]
    [Google Scholar]
  27. Husain M., Weisberg A., Moss B.. ( 2003;). Topology of epitope-tagged F13L protein, a major membrane component of extracellular vaccinia virions. . Virology 308:, 233–242. [CrossRef][PubMed]
    [Google Scholar]
  28. Isaacs S. N., Wolffe E. J., Payne L. G., Moss B.. ( 1992;). Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. . J Virol 66:, 7217–7224.[PubMed]
    [Google Scholar]
  29. Katz E., Wolffe E., Moss B.. ( 2002;). Identification of second-site mutations that enhance release and spread of vaccinia virus. . J Virol 76:, 11637–11644. [CrossRef][PubMed]
    [Google Scholar]
  30. Katz E., Ward B. M., Weisberg A. S., Moss B.. ( 2003;). Mutations in the vaccinia virus A33R and B5R envelope proteins that enhance release of extracellular virions and eliminate formation of actin-containing microvilli without preventing tyrosine phosphorylation of the A36R protein. . J Virol 77:, 12266–12275. [CrossRef][PubMed]
    [Google Scholar]
  31. Kerr S. M., Johnston L. H., Odell M., Duncan S. A., Law K. M., Smith G. L.. ( 1991;). Vaccinia DNA ligase complements Saccharomyces cerevisiae cdc9, localizes in cytoplasmic factories and affects virulence and virus sensitivity to DNA damaging agents. . EMBO J 10:, 4343–4350.[PubMed]
    [Google Scholar]
  32. Law K. M., Smith G. L.. ( 1992;). A vaccinia serine protease inhibitor which prevents virus-induced cell fusion. . J Gen Virol 73:, 549–557. [CrossRef][PubMed]
    [Google Scholar]
  33. Law M., Smith G. L.. ( 2001;). Antibody neutralization of the extracellular enveloped form of vaccinia virus. . Virology 280:, 132–142. [CrossRef][PubMed]
    [Google Scholar]
  34. Law M., Hollinshead R., Smith G. L.. ( 2002;). Antibody-sensitive and antibody-resistant cell-to-cell spread by vaccinia virus: role of the A33R protein in antibody-resistant spread. . J Gen Virol 83:, 209–222.[PubMed]
    [Google Scholar]
  35. Law M., Carter G. C., Roberts K. L., Hollinshead M., Smith G. L.. ( 2006;). Ligand-induced and nonfusogenic dissolution of a viral membrane. . Proc Natl Acad Sci U S A 103:, 5989–5994. [CrossRef][PubMed]
    [Google Scholar]
  36. Lorenzo M. M., Herrera E., Blasco R., Isaacs S. N.. ( 1998;). Functional analysis of vaccinia virus B5R protein: role of the cytoplasmic tail. . Virology 252:, 450–457. [CrossRef][PubMed]
    [Google Scholar]
  37. Lorenzo M. M., Galindo I., Griffiths G., Blasco R.. ( 2000;). Intracellular localization of vaccinia virus extracellular enveloped virus envelope proteins individually expressed using a Semliki Forest virus replicon. . J Virol 74:, 10535–10550. [CrossRef][PubMed]
    [Google Scholar]
  38. Lorenzo M. M., Sánchez-Puig J. M., Blasco R.. ( 2012;). Mutagenesis of the palmitoylation site in vaccinia virus envelope glycoprotein B5. . J Gen Virol 93:, 733–743. [CrossRef][PubMed]
    [Google Scholar]
  39. Mackett M., Smith G. L., Moss B.. ( 1984;). General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. . J Virol 49:, 857–864.[PubMed]
    [Google Scholar]
  40. Mathew E., Sanderson C. M., Hollinshead M., Smith G. L.. ( 1998;). The extracellular domain of vaccinia virus protein B5R affects plaque phenotype, extracellular enveloped virus release, and intracellular actin tail formation. . J Virol 72:, 2429–2438.[PubMed]
    [Google Scholar]
  41. Mathew E. C., Sanderson C. M., Hollinshead R., Hollinshead M., Grimley R., Smith G. L.. ( 1999;). The effects of targeting the vaccinia virus B5R protein to the endoplasmic reticulum on virus morphogenesis and dissemination. . Virology 265:, 131–146. [CrossRef][PubMed]
    [Google Scholar]
  42. Mathew E. C., Sanderson C. M., Hollinshead R., Smith G. L.. ( 2001;). A mutational analysis of the vaccinia virus B5R protein. . J Gen Virol 82:, 1199–1213.[PubMed]
    [Google Scholar]
  43. McIntosh A. A., Smith G. L.. ( 1996;). Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus. . J Virol 70:, 272–281.[PubMed]
    [Google Scholar]
  44. Moss B.. ( 2007;). Poxviridae: the viruses and their replicaton. . In Fields Virology, , 5th edn., pp. 2905–2946. Edited by Knipe D. M., Howley P. M... Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  45. Newsome T. P., Scaplehorn N., Way M.. ( 2004;). SRC mediates a switch from microtubule- to actin-based motility of vaccinia virus. . Science 306:, 124–129. [CrossRef][PubMed]
    [Google Scholar]
  46. Okeke M. I., Nilssen O., Traavik T.. ( 2006;). Modified vaccinia virus Ankara multiplies in rat IEC-6 cells and limited production of mature virions occurs in other mammalian cell lines. . J Gen Virol 87:, 21–27. [CrossRef][PubMed]
    [Google Scholar]
  47. Parkinson J. E., Smith G. L.. ( 1994;). Vaccinia virus gene A36R encodes a Mr 43-50 K protein on the surface of extracellular enveloped virus. . Virology 204:, 376–390. [CrossRef][PubMed]
    [Google Scholar]
  48. Payne L. G.. ( 1979;). Identification of the vaccinia hemagglutinin polypeptide from a cell system yielding large amounts of extracellular enveloped virus. . J Virol 31:, 147–155.[PubMed]
    [Google Scholar]
  49. Payne L. G., Kristenson K.. ( 1979;). Mechanism of vaccinia virus release and its specific inhibition by N1-isonicotinoyl-N2-3-methyl-4-chlorobenzoylhydrazine. . J Virol 32:, 614–622.[PubMed]
    [Google Scholar]
  50. Payne L. G., Norrby E.. ( 1976;). Presence of haemagglutinin in the envelope of extracellular vaccinia virus particles. . J Gen Virol 32:, 63–72. [CrossRef][PubMed]
    [Google Scholar]
  51. Perdiguero B., Blasco R.. ( 2006;). Interaction between vaccinia virus extracellular virus envelope A33 and B5 glycoproteins. . J Virol 80:, 8763–8777. [CrossRef][PubMed]
    [Google Scholar]
  52. Perdiguero B., Lorenzo M. M., Blasco R.. ( 2008;). Vaccinia virus A34 glycoprotein determines the protein composition of the extracellular virus envelope. . J Virol 82:, 2150–2160. [CrossRef][PubMed]
    [Google Scholar]
  53. Rietdorf J., Ploubidou A., Reckmann I., Holmström A., Frischknecht F., Zettl M., Zimmermann T., Way M.. ( 2001;). Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. . Nat Cell Biol 3:, 992–1000. [CrossRef][PubMed]
    [Google Scholar]
  54. Roberts K. L., Breiman A., Carter G. C., Ewles H. A., Hollinshead M., Law M., Smith G. L.. ( 2009;). Acidic residues in the membrane-proximal stalk region of vaccinia virus protein B5 are required for glycosaminoglycan-mediated disruption of the extracellular enveloped virus outer membrane. . J Gen Virol 90:, 1582–1591. [CrossRef][PubMed]
    [Google Scholar]
  55. Roper R. L., Payne L. G., Moss B.. ( 1996;). Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. . J Virol 70:, 3753–3762.[PubMed]
    [Google Scholar]
  56. Roper R. L., Wolffe E. J., Weisberg A., Moss B.. ( 1998;). The envelope protein encoded by the A33R gene is required for formation of actin-containing microvilli and efficient cell-to-cell spread of vaccinia virus. . J Virol 72:, 4192–4204.[PubMed]
    [Google Scholar]
  57. Röttger S., Frischknecht F., Reckmann I., Smith G. L., Way M.. ( 1999;). Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation. . J Virol 73:, 2863–2875.[PubMed]
    [Google Scholar]
  58. Sanderson C. M., Frischknecht F., Way M., Hollinshead M., Smith G. L.. ( 1998a;). Roles of vaccinia virus EEV-specific proteins in intracellular actin tail formation and low pH-induced cell-cell fusion. . J Gen Virol 79:, 1415–1425.[PubMed]
    [Google Scholar]
  59. Sanderson C. M., Way M., Smith G. L.. ( 1998b;). Virus-induced cell motility. . J Virol 72:, 1235–1243.[PubMed]
    [Google Scholar]
  60. Scaplehorn N., Holmström A., Moreau V., Frischknecht F., Reckmann I., Way M.. ( 2002;). Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia virus. . Curr Biol 12:, 740–745. [CrossRef][PubMed]
    [Google Scholar]
  61. Schmelz M., Sodeik B., Ericsson M., Wolffe E. J., Shida H., Hiller G., Griffiths G.. ( 1994;). Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network. . J Virol 68:, 130–147.[PubMed]
    [Google Scholar]
  62. Schmidt F. I., Bleck C. K., Helenius A., Mercer J.. ( 2011;). Vaccinia extracellular virions enter cells by macropinocytosis and acid-activated membrane rupture. . EMBO J 30:, 3647–3661. [CrossRef][PubMed]
    [Google Scholar]
  63. Smith G. L., Mackett M., Moss B.. ( 1983;). Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen. . Nature 302:, 490–495. [CrossRef][PubMed]
    [Google Scholar]
  64. Smith G. L., Vanderplasschen A., Law M.. ( 2002;). The formation and function of extracellular enveloped vaccinia virus. . J Gen Virol 83:, 2915–2931.[PubMed]
    [Google Scholar]
  65. Smith G. L., Murphy B. J., Law M.. ( 2003;). Vaccinia virus motility. . Annu Rev Microbiol 57:, 323–342. [CrossRef][PubMed]
    [Google Scholar]
  66. Stokes G. V.. ( 1976;). High-voltage electron microscope study of the release of vaccinia virus from whole cells. . J Virol 18:, 636–643.[PubMed]
    [Google Scholar]
  67. Su H. P., Singh K., Gittis A. G., Garboczi D. N.. ( 2010;). The structure of the poxvirus A33 protein reveals a dimer of unique C-type lectin-like domains. . J Virol 84:, 2502–2510. [CrossRef][PubMed]
    [Google Scholar]
  68. Takahashi-Nishimaki F., Funahashi S., Miki K., Hashizume S., Sugimoto M.. ( 1991;). Regulation of plaque size and host range by a vaccinia virus gene related to complement system proteins. . Virology 181:, 158–164. [CrossRef][PubMed]
    [Google Scholar]
  69. Turner P. C., Moyer R. W.. ( 2006;). The cowpox virus fusion regulator proteins SPI-3 and hemagglutinin interact in infected and uninfected cells. . Virology 347:, 88–99. [CrossRef][PubMed]
    [Google Scholar]
  70. Valderrama F., Cordeiro J. V., Schleich S., Frischknecht F., Way M.. ( 2006;). Vaccinia virus-induced cell motility requires F11L-mediated inhibition of RhoA signaling. . Science 311:, 377–381. [CrossRef][PubMed]
    [Google Scholar]
  71. van Eijl H., Hollinshead M., Smith G. L.. ( 2000;). The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped virus particles. . Virology 271:, 26–36. [CrossRef][PubMed]
    [Google Scholar]
  72. van Eijl H., Hollinshead M., Rodger G., Zhang W. H., Smith G. L.. ( 2002;). The vaccinia virus F12L protein is associated with intracellular enveloped virus particles and is required for their egress to the cell surface. . J Gen Virol 83:, 195–207.[PubMed]
    [Google Scholar]
  73. Wagenaar T. R., Moss B.. ( 2007;). Association of vaccinia virus fusion regulatory proteins with the multicomponent entry/fusion complex. . J Virol 81:, 6286–6293. [CrossRef][PubMed]
    [Google Scholar]
  74. Wagenaar T. R., Moss B.. ( 2009;). Expression of the A56 and K2 proteins is sufficient to inhibit vaccinia virus entry and cell fusion. . J Virol 83:, 1546–1554. [CrossRef][PubMed]
    [Google Scholar]
  75. Wagenaar T. R., Ojeda S., Moss B.. ( 2008;). Vaccinia virus A56/K2 fusion regulatory protein interacts with the A16 and G9 subunits of the entry fusion complex. . J Virol 82:, 5153–5160. [CrossRef][PubMed]
    [Google Scholar]
  76. Ward B. M., Moss B.. ( 2001;). Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails. . J Virol 75:, 11651–11663. [CrossRef][PubMed]
    [Google Scholar]
  77. Ward B. M., Weisberg A. S., Moss B.. ( 2003;). Mapping and functional analysis of interaction sites within the cytoplasmic domains of the vaccinia virus A33R and A36R envelope proteins. . J Virol 77:, 4113–4126. [CrossRef][PubMed]
    [Google Scholar]
  78. Wolffe E. J., Isaacs S. N., Moss B.. ( 1993;). Deletion of the vaccinia virus B5R gene encoding a 42-kilodalton membrane glycoprotein inhibits extracellular virus envelope formation and dissemination. . J Virol 67:, 4732–4741.[PubMed]
    [Google Scholar]
  79. Wolffe E. J., Weisberg A. S., Moss B.. ( 2001;). The vaccinia virus A33R protein provides a chaperone function for viral membrane localization and tyrosine phosphorylation of the A36R protein. . J Virol 75:, 303–310. [CrossRef][PubMed]
    [Google Scholar]
  80. Zhang W. H., Wilcock D., Smith G. L.. ( 2000;). Vaccinia virus F12L protein is required for actin tail formation, normal plaque size, and virulence. . J Virol 74:, 11654–11662. [CrossRef][PubMed]
    [Google Scholar]
  81. Zhou J., Sun X. Y., Fernando G. J., Frazer I. H.. ( 1992;). The vaccinia virus K2L gene encodes a serine protease inhibitor which inhibits cell-cell fusion. . Virology 189:, 678–686. [CrossRef][PubMed]
    [Google Scholar]
  82. Zwilling J., Sliva K., Schwantes A., Schnierle B., Sutter G.. ( 2010;). Functional F11L and K1L genes in modified vaccinia virus Ankara restore virus-induced cell motility but not growth in human and murine cells. . Virology 404:, 231–239. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.043943-0
Loading
/content/journal/jgv/10.1099/vir.0.043943-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error