1887

Abstract

Chikungunya virus (CHIKV) has caused massive epidemics in the Indian Ocean region since 2005. It belongs to the genus and possesses a positive-stranded RNA genome of nearly 12 kb in size. To produce genetically modified viruses for the study of various aspects of the CHIKV life cycle, a reverse genetic system is needed. We report the generation of a T7 RNA polymerase-driven infectious cDNA clone of CHIKV. Electroporation of -transcribed RNA resulted in the recovery of a recombinant virus with growth characteristics comparable to the parental strain. Using the established cDNA clone, the red fluorescent marker gene mCherry was introduced into two different sites within the CHIKV nsP3 gene. Both constructs allowed the rescue of stable fluorescent reporter viruses with growth characteristics similar to the wild-type virus. The latter reporter viruses represent valuable tools for easy follow-up of replicating CHIKV useful in several applications of CHIKV research.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.043752-0
2012-09-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/9/1991.html?itemId=/content/journal/jgv/10.1099/vir.0.043752-0&mimeType=html&fmt=ahah

References

  1. Bick M. J., Carroll J. W., Gao G., Goff S. P., Rice C. M., MacDonald M. R.. ( 2003;). Expression of the zinc-finger antiviral protein inhibits alphavirus replication. . J Virol 77:, 11555–11562. [CrossRef][PubMed]
    [Google Scholar]
  2. Bouraï M., Lucas-Hourani M., Gad H. H., Drosten C., Jacob Y., Tafforeau L., Cassonnet P., Jones L. M., Judith D.. & other authors ( 2012;). Mapping of Chikungunya virus interactions with host proteins identified nsP2 as a highly connected viral component. . J Virol 86:, 3121–3134. [CrossRef][PubMed]
    [Google Scholar]
  3. Charlier N., Molenkamp R., Leyssen P., Vandamme A. M., De Clercq E., Bredenbeek P., Neyts J.. ( 2003;). A rapid and convenient variant of fusion-PCR to construct chimeric flaviviruses. . J Virol Methods 108:, 67–74. [CrossRef][PubMed]
    [Google Scholar]
  4. Diallo M., Thonnon J., Traore-Lamizana M., Fontenille D.. ( 1999;). Vectors of Chikungunya virus in Senegal: current data and transmission cycles. . Am J Trop Med Hyg 60:, 281–286.[PubMed]
    [Google Scholar]
  5. Frolova E., Gorchakov R., Garmashova N., Atasheva S., Vergara L. A., Frolov I.. ( 2006;). Formation of nsP3-specific protein complexes during Sindbis virus replication. . J Virol 80:, 4122–4134. [CrossRef][PubMed]
    [Google Scholar]
  6. Gorchakov R., Garmashova N., Frolova E., Frolov I.. ( 2008;). Different types of nsP3-containing protein complexes in Sindbis virus-infected cells. . J Virol 82:, 10088–10101. [CrossRef][PubMed]
    [Google Scholar]
  7. Gorchakov R., Wang E., Leal G., Forrester N. L., Plante K., Rossi S. L., Partidos C. D., Adams A. P., Seymour R.. & other authors ( 2012;). Attenuation of Chikungunya vaccine strain 181/clone 25 is determined by 2 amino acid substitutions in the E2 envelope glycoprotein. . J Virol 86:, 6084–6096. [CrossRef]
    [Google Scholar]
  8. Graewe S., Retzlaff S., Struck N., Janse C. J., Heussler V. T.. ( 2009;). Going live: a comparative analysis of the suitability of the RFP derivatives RedStar, mCherry and tdTomato for intravital and in vitro live imaging of Plasmodium parasites. . Biotechnol J 4:, 895–902. [CrossRef][PubMed]
    [Google Scholar]
  9. Kuhn R. J.. ( 2007;). Togaviridae: the viruses and their replication. . In Fields Virology, , 5th edn., vol. 1, pp. 1001–1022. Edited by Knipe D. M., Howley P. M... Philadelphia:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  10. Kümmerer B. M., Rice C. M.. ( 2002;). Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious particles. . J Virol 76:, 4773–4784. [CrossRef][PubMed]
    [Google Scholar]
  11. Olson K. E., Higgs S., Hahn C. S., Rice C. M., Carlson J. O., Beaty B. J.. ( 1994;). The expression of chloramphenicol acetyltransferase in Aedes albopictus (C6/36) cells and Aedes triseriatus mosquitoes using a double subgenomic recombinant Sindbis virus. . Insect Biochem Mol Biol 24:, 39–48. [CrossRef][PubMed]
    [Google Scholar]
  12. Panning M., Grywna K., van Esbroeck M., Emmerich P., Drosten C.. ( 2008;). Chikungunya fever in travelers returning to Europe from the Indian Ocean region, 2006. . Emerg Infect Dis 14:, 416–422. [CrossRef][PubMed]
    [Google Scholar]
  13. Plante K., Wang E., Partidos C. D., Weger J., Gorchakov R., Tsetsarkin K., Borland E. M., Powers A. M., Seymour R.. & other authors ( 2011;). Novel Chikungunya vaccine candidate with an IRES-based attenuation and host range alteration mechanism. . PLoS Pathog 7:, e1002142. [CrossRef][PubMed]
    [Google Scholar]
  14. Pohjala L., Utt A., Varjak M., Lulla A., Merits A., Ahola T., Tammela P.. ( 2011;). Inhibitors of alphavirus entry and replication identified with a stable Chikungunya replicon cell line and virus-based assays. . PLoS ONE 6:, e28923. [CrossRef][PubMed]
    [Google Scholar]
  15. Pugachev K. V., Mason P. W., Shope R. E., Frey T. K.. ( 1995;). Double-subgenomic Sindbis virus recombinants expressing immunogenic proteins of Japanese encephalitis virus induce significant protection in mice against lethal JEV infection. . Virology 212:, 587–594. [CrossRef][PubMed]
    [Google Scholar]
  16. Pugachev K. V., Tzeng W. P., Frey T. K.. ( 2000;). Development of a rubella virus vaccine expression vector: use of a picornavirus internal ribosome entry site increases stability of expression. . J Virol 74:, 10811–10815. [CrossRef][PubMed]
    [Google Scholar]
  17. Sreekumar E., Issac A., Nair S., Hariharan R., Janki M. B., Arathy D. S., Regu R., Mathew T., Anoop M.. & other authors ( 2010;). Genetic characterization of 2006-2008 isolates of Chikungunya virus from Kerala, South India, by whole genome sequence analysis. . Virus Genes 40:, 14–27. [CrossRef][PubMed]
    [Google Scholar]
  18. Tamberg N., Lulla V., Fragkoudis R., Lulla A., Fazakerley J. K., Merits A.. ( 2007;). Insertion of EGFP into the replicase gene of Semliki Forest virus results in a novel, genetically stable marker virus. . J Gen Virol 88:, 1225–1230. [CrossRef][PubMed]
    [Google Scholar]
  19. Thomas J. M., Klimstra W. B., Ryman K. D., Heidner H. W.. ( 2003;). Sindbis virus vectors designed to express a foreign protein as a cleavable component of the viral structural polyprotein. . J Virol 77:, 5598–5606. [CrossRef][PubMed]
    [Google Scholar]
  20. Tsetsarkin K. A., Vanlandingham D. L., McGee C. E., Higgs S.. ( 2007;). A single mutation in Chikungunya virus affects vector specificity and epidemic potential. . PLoS Pathog 3:, e201. [CrossRef][PubMed]
    [Google Scholar]
  21. Tsetsarkin K. A., McGee C. E., Volk S. M., Vanlandingham D. L., Weaver S. C., Higgs S.. ( 2009;). Epistatic roles of E2 glycoprotein mutations in adaption of Chikungunya virus to Aedes albopictus and Ae. aegypti mosquitoes. . PLoS ONE 4:, e6835. [CrossRef][PubMed]
    [Google Scholar]
  22. Vanlandingham D. L., Tsetsarkin K., Hong C., Klingler K., McElroy K. L., Lehane M. J., Higgs S.. ( 2005;). Development and characterization of a double subgenomic Chikungunya virus infectious clone to express heterologous genes in Aedes aegypti mosquitoes. . Insect Biochem Mol Biol 35:, 1162–1170. [CrossRef][PubMed]
    [Google Scholar]
  23. Varjak M., Zusinaite E., Merits A.. ( 2010;). Novel functions of the alphavirus nonstructural protein nsP3 C-terminal region. . J Virol 84:, 2352–2364. [CrossRef][PubMed]
    [Google Scholar]
  24. Wang E., Kim D. Y., Weaver S. C., Frolov I.. ( 2011;). Chimeric Chikungunya viruses are nonpathogenic in highly sensitive mouse models but efficiently induce a protective immune response. . J Virol 85:, 9249–9252. [CrossRef][PubMed]
    [Google Scholar]
  25. Ziegler S. A., Nuckols J., McGee C. E., Huang Y. J., Vanlandingham D. L., Tesh R. B., Higgs S.. ( 2011;). In vivo imaging of Chikungunya virus in mice and Aedes mosquitoes using a Renilla luciferase clone. . Vector Borne Zoonotic Dis 11:, 1471–1477. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.043752-0
Loading
/content/journal/jgv/10.1099/vir.0.043752-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error