1887

Abstract

The bacteriophage vB_SenS-Ent1 (Ent1) is a member of the family of tailed bacteriophages and infects a broad range of serovars of the enteric pathogen . The virion particle is composed of an icosahedral head 64 nm in diameter and a flexible, non-contractile tail of 116 × 8.5 nm possessing terminal fibres. The adsorption rate constant at 37 °C is 6.73 × 10 ml min. Latent and eclipse periods are 25 and 20 min, respectively, and the burst size is 35 progeny particles per cell after 35 min at 37 °C. Sequencing revealed a circularly permuted, 42 391 bp dsDNA genome containing 58 ORFs organized into four major transcriptional units. Comparisons with the genome sequences of other bacteriophages revealed a high level of nucleotide sequence identity and shared orthologous proteins with the phages SETP3, SE2 and KS7 (SS3e) and the phages K1G, K1H, K1ind1 and K1ind3.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.043331-0
2012-09-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/9/2046.html?itemId=/content/journal/jgv/10.1099/vir.0.043331-0&mimeType=html&fmt=ahah

References

  1. Abramoff M. D., Magalhaes P. J., Ram S. J. 2004; Image processing with ImageJ. Biophotonics Int 11:36–42
    [Google Scholar]
  2. Acheson D., Hohmann E. L. 2001; Nontyphoidal salmonellosis. Clin Infect Dis 32:263–269 [CrossRef][PubMed]
    [Google Scholar]
  3. Ackermann H.-W. 2007; Salmonella phages examined in the electron microscope. Methods Mol Biol 394:213–234 [CrossRef][PubMed]
    [Google Scholar]
  4. Ackermann H.-W. 2009; Basic phage electron microscopy. Methods Mol Biol 501:113–126 [CrossRef][PubMed]
    [Google Scholar]
  5. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  6. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  7. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M. et al. 2008; The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75 [CrossRef][PubMed]
    [Google Scholar]
  8. Bailey T. L., Williams N., Misleh C., Li W. W. 2006; MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:web server issueW369–W373 [CrossRef][PubMed]
    [Google Scholar]
  9. Besemer J., Borodovsky M. 1999; Heuristic approach to deriving models for gene finding. Nucleic Acids Res 27:3911–3920 [CrossRef][PubMed]
    [Google Scholar]
  10. Bjellqvist B., Hughes G. J., Pasquali C., Paquet N., Ravier F., Sanchez J. C., Frutiger S., Hochstrasser D. 1993; The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14:1023–1031 [CrossRef][PubMed]
    [Google Scholar]
  11. Buchan D. W., Ward S. M., Lobley A. E., Nugent T. C., Bryson K., Jones D. T. 2010; Protein annotation and modelling servers at University College London. Nucleic Acids Res 38:Suppl.W563–W568 [CrossRef][PubMed]
    [Google Scholar]
  12. Bull J. J., Vimr E. R., Molineux I. J. 2010; A tale of tails: sialidase is key to success in a model of phage therapy against K1-capsulated Escherichia coli. . Virology 398:79–86 [CrossRef][PubMed]
    [Google Scholar]
  13. Byl C. V., Kropinski A. M. 2000; Sequence of the genome of Salmonella bacteriophage P22. J Bacteriol 182:6472–6481 [CrossRef][PubMed]
    [Google Scholar]
  14. Canchaya C., Fournous G., Chibani-Chennoufi S., Dillmann M.-L., Brüssow H. 2003; Phage as agents of lateral gene transfer. Curr Opin Microbiol 6:417–424 [CrossRef][PubMed]
    [Google Scholar]
  15. Casjens S. R. 2005; Comparative genomics and evolution of the tailed-bacteriophages. Curr Opin Microbiol 8:451–458 [CrossRef][PubMed]
    [Google Scholar]
  16. Casjens S. R., Thuman-Commike P. A. 2011; Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology 411:393–415 [CrossRef][PubMed]
    [Google Scholar]
  17. Cresawn S. G., Bogel M., Day N., Jacobs-Sera D., Hendrix R. W., Hatfull G. F. 2011; Phamerator: a bioinformatic tool for comparative bacteriophage genomics. BMC Bioinformatics 12:395 [CrossRef][PubMed]
    [Google Scholar]
  18. Darling A. E., Mau B., Perna N. T. 2010; progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5:e11147 [CrossRef][PubMed]
    [Google Scholar]
  19. De Lappe N., Doran G., O’Connor J., O’Hare C., Cormican M. 2009; Characterization of bacteriophages used in the Salmonella enterica serovar Enteritidis phage-typing scheme. J Med Microbiol 58:86–93 [CrossRef][PubMed]
    [Google Scholar]
  20. Delcher A. L., Harmon D., Kasif S., White O., Salzberg S. L. 1999; Improved microbial gene identification with GLIMMER.. Nucleic Acids Res 27:4636–4641 [CrossRef][PubMed]
    [Google Scholar]
  21. Dröge A., Santos M. A., Stiege A. C., Alonso J. C., Lurz R., Trautner T. A., Tavares P. 2000; Shape and DNA packaging activity of bacteriophage SPP1 procapsid: protein components and interactions during assembly. J Mol Biol 296:117–132 [CrossRef][PubMed]
    [Google Scholar]
  22. ECDC 2010 Annual Epidemiological Report on Communicable Diseases in Europe 2010 Stockholm: European Centre for Disease Prevention and Control;
    [Google Scholar]
  23. Figueroa-Bossi N., Uzzau S., Maloriol D., Bossi L. 2001; Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. . Mol Microbiol 39:260–271 [CrossRef][PubMed]
    [Google Scholar]
  24. Fraser J. S., Maxwell K. L., Davidson A. R. 2007; Immunoglobulin-like domains on bacteriophage: weapons of modest damage?. Curr Opin Microbiol 10:382–387 [CrossRef][PubMed]
    [Google Scholar]
  25. Gilcrease E. B., Winn-Stapley D. A., Hewitt F. C., Joss L., Casjens S. R. 2005; Nucleotide sequence of the head assembly gene cluster of bacteriophage L and decoration protein characterization. J Bacteriol 187:2050–2057 [CrossRef][PubMed]
    [Google Scholar]
  26. Grimont A. D., Weill F.-X. 2007 Antigenic Formulae of the Salmonella Serovars, World Health Organisation Collaborating Centre for Reference and Research on Salmonella, 9th edn. Paris: Pasteur Institute;
    [Google Scholar]
  27. Gruber A. R., Lorenz R., Bernhart S. H., Neuböck R., Hofacker I. L. 2008; The Vienna RNA websuite. Nucleic Acids Res 36:web server issueW70–W74 [CrossRef][PubMed]
    [Google Scholar]
  28. Hanning I. B., Nutt J. D., Ricke S. C. 2009; Salmonellosis outbreaks in the United States due to fresh produce: sources and potential intervention measures. Foodborne Pathog Dis 6:635–648 [CrossRef][PubMed]
    [Google Scholar]
  29. Hatfull G. F. 2008; Bacteriophage genomics. Curr Opin Microbiol 11:447–453 [CrossRef][PubMed]
    [Google Scholar]
  30. Hatfull G. F., Hendrix R. W. 2011; Bacteriophages and their genomes. Curr Opin Virol 1:298–303 [CrossRef][PubMed]
    [Google Scholar]
  31. Hatfull G. F., Cresawn S. G., Hendrix R. W. 2008; Comparative genomics of the mycobacteriophages: insights into bacteriophage evolution. Res Microbiol 159:332–339 [CrossRef][PubMed]
    [Google Scholar]
  32. Henthorn K. S., Friedman D. I. 1995; Identification of related genes in phages phi 80 and P22 whose products are inhibitory for phage growth in Escherichia coli IHF mutants. J Bacteriol 177:3185–3190[PubMed]
    [Google Scholar]
  33. Hooton S. P., Timms A. R., Rowsell J., Wilson R., Connerton I. F. 2011; Salmonella Typhimurium-specific bacteriophage ΦSH19 and the origins of species specificity in the Vi01-like phage family. Virol J 8:498 [CrossRef][PubMed]
    [Google Scholar]
  34. Ilyina T. V., Gorbalenya A. E., Koonin E. V. 1992; Organization and evolution of bacterial and bacteriophage primase-helicase systems. J Mol Evol 34:351–357 [CrossRef][PubMed]
    [Google Scholar]
  35. Jiang X., Jiang H., Li C., Wang S., Mi Z., An X., Chen J., Tong Y. 2011; Sequence characteristics of T4-like bacteriophage IME08 benome termini revealed by high throughput sequencing. Virol J 8:194 [CrossRef][PubMed]
    [Google Scholar]
  36. Jones D. T. 1999; Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202 [CrossRef][PubMed]
    [Google Scholar]
  37. Kaliniene L., Klausa V., Zajančkauskaite A., Nivinskas R., Truncaite L. 2011; Genome of low-temperature T4-related bacteriophage vB_EcoM-VR7. Arch Virol 156:1913–1916 [CrossRef][PubMed]
    [Google Scholar]
  38. Karumidze N., Thomas J. A., Kvatadze N., Goderdzishvili M., Hakala K. W., Weintraub S. T., Alavidze Z., Hardies S. C. 2012; Characterization of lytic Pseudomonas aeruginosa bacteriophages via biological properties and genomic sequences. Appl Microbiol Biotechnol 94:1609–1617[PubMed] [CrossRef]
    [Google Scholar]
  39. Katsura I., Hendrix R. W. 1984; Length determination in bacteriophage lambda tails. Cell 39:691–698 [CrossRef][PubMed]
    [Google Scholar]
  40. King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. editors 2011 Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses London: Elsevier/Academic Press;
    [Google Scholar]
  41. Kingsford C. L., Ayanbule K., Salzberg S. L. 2007; Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol 8:R22 [CrossRef][PubMed]
    [Google Scholar]
  42. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. L. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580 [CrossRef][PubMed]
    [Google Scholar]
  43. Kropinski A. M. 2009; Measurement of the rate of attachment of bacteriophage to cells. Methods Mol Biol 501:151–155 [CrossRef][PubMed]
    [Google Scholar]
  44. Kropinski A. M., Sulakvelidze A., Konczy P., Poppe C. 2007; Salmonella phages and prophages–genomics and practical aspects. Methods Mol Biol 394:133–175 [CrossRef][PubMed]
    [Google Scholar]
  45. Kropinski A. M., Prangishvili D., Lavigne R. 2009a; Position paper: the creation of a rational scheme for the nomenclature of viruses of Bacteria and Archaea. Environ Microbiol 11:2775–2777 [CrossRef][PubMed]
    [Google Scholar]
  46. Kropinski A. M., Mazzocco A., Waddell T. E., Lingohr E., Johnson R. P. 2009b; Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol Biol 501:69–76 [CrossRef][PubMed]
    [Google Scholar]
  47. Krumsiek J., Arnold R., Rattei T. 2007; Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23:1026–1028 [CrossRef][PubMed]
    [Google Scholar]
  48. Kutter E. 2009; Phage host range and efficiency of plating. Methods Mol Biol 501:141–149 [CrossRef][PubMed]
    [Google Scholar]
  49. Laslett D., Canback B. 2004; ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16 [CrossRef][PubMed]
    [Google Scholar]
  50. Lavigne R., Seto D., Mahadevan P., Ackermann H.-W., Kropinski A. M. 2008; Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 159:406–414 [CrossRef][PubMed]
    [Google Scholar]
  51. Lavigne R., Darius P., Summer E. J., Seto D., Mahadevan P., Nilsson A. S., Ackermann H. W., Kropinski A. M. 2009; Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 9:224 [CrossRef][PubMed]
    [Google Scholar]
  52. Leplae R., Lima-Mendez G., Toussaint A. 2010; ACLAME: a CLAssification of Mobile genetic Elements, update 2010. Nucleic Acids Res 38:database issueD57–D61 [CrossRef][PubMed]
    [Google Scholar]
  53. Lingohr E., Frost S., Johnson R. P. 2009; Determination of bacteriophage genome size by pulsed-field gel electrophoresis. Methods Mol Biol 502:19–25 [CrossRef][PubMed]
    [Google Scholar]
  54. Liu J., Dehbi M., Moeck G., Arhin F., Bauda P., Bergeron D., Callejo M., Ferretti V., Ha N. et al. 2004; Antimicrobial drug discovery through bacteriophage genomics. Nat Biotechnol 22:185–191 [CrossRef][PubMed]
    [Google Scholar]
  55. Loessner M. J., Inman R. B., Lauer P., Calendar R. 2000; Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Mol Microbiol 35:324–340 [CrossRef][PubMed]
    [Google Scholar]
  56. Lu M. J., Stierhof Y. D., Henning U. 1993; Location and unusual membrane topology of the immunity protein of the Escherichia coli phage T4. J Virol 67:4905–4913[PubMed]
    [Google Scholar]
  57. Marchler-Bauer A., Lu S., Anderson J. B., Chitsaz F., Derbyshire M. K., DeWeese-Scott C., Fong J. H., Geer L. Y., Geer R. C. et al. 2011; CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:database issueD225–D229 [CrossRef][PubMed]
    [Google Scholar]
  58. Mc Grath S., Neve H., Seegers J. F. M. L., Eijlander R., Vegge C. S., Brøndsted L., Heller K. J., Fitzgerald G. F., Vogensen F. K., van Sinderen D. 2006; Anatomy of a lactococcal phage tail. J Bacteriol 188:3972–3982 [CrossRef][PubMed]
    [Google Scholar]
  59. McClelland M., Sanderson K. E., Spieth J., Clifton S. W., Latreille P., Courtney L., Porwollik S., Ali J., Dante M. et al. 2001; Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856 [CrossRef][PubMed]
    [Google Scholar]
  60. McNair K., Bailey B. A., Edwards R. A. 2012; PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics 28:614–618 [CrossRef][PubMed]
    [Google Scholar]
  61. Mitra A., Kesarwani A. K., Pal D., Nagaraja V. 2011; WebGeSTer DB – a transcription terminator database. Nucleic Acids Res 39:database issueD129–D135 [CrossRef][PubMed]
    [Google Scholar]
  62. Perler F. B. 2002; InBase: the intein database. Nucleic Acids Res 30:383–384 [CrossRef][PubMed]
    [Google Scholar]
  63. Perler F. B., Olsen G. J., Adam E. 1997; Compilation and analysis of intein sequences. Nucleic Acids Res 25:1087–1093 [CrossRef][PubMed]
    [Google Scholar]
  64. Petersen T. N., Brunak S., von Heijne G., Nielsen H. 2011; SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786 [CrossRef][PubMed]
    [Google Scholar]
  65. Punta M., Coggill P. C., Eberhardt R. Y., Mistry J., Tate J., Boursnell C., Pang N., Forslund K., Ceric G. et al. 2012; The Pfam protein families database. Nucleic Acids Res 40:database issueD290–D301 [CrossRef][PubMed]
    [Google Scholar]
  66. Quevillon E., Silventoinen V., Pillai S., Harte N., Mulder N., Apweiler R., Lopez R. 2005; InterProScan: protein domains identifier. Nucleic Acids Res 33:web server issueW116–W120 [CrossRef][PubMed]
    [Google Scholar]
  67. Reen F. J., Boyd E. F., Porwollik S., Murphy B. P., Gilroy D., Fanning S., McClelland M. 2005; Genomic comparisons of Salmonella enterica serovar Dublin, Agona, and Typhimurium strains recently isolated from milk filters and bovine samples from Ireland, using a Salmonella microarray. Appl Environ Microbiol 71:1616–1625 [CrossRef][PubMed]
    [Google Scholar]
  68. Rees C. E. D., Dodd C. E. R. 2006; Phage for rapid detection and control of bacterial pathogens in food. Adv Appl Microbiol 59:159–186 [CrossRef][PubMed]
    [Google Scholar]
  69. Rohwer F., Edwards R. 2002; The Phage Proteomic Tree: a genome-based taxonomy for phage. J Bacteriol 184:4529–4535 [CrossRef][PubMed]
    [Google Scholar]
  70. Roucourt B., Lavigne R. 2009; The role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome. Environ Microbiol 11:2789–2805 [CrossRef][PubMed]
    [Google Scholar]
  71. Rutherford K., Parkhill J., Crook J., Horsnell T., Rice P., Rajandream M. A., Barrell B. 2000; Artemis: sequence visualization and annotation. Bioinformatics 16:944–945 [CrossRef][PubMed]
    [Google Scholar]
  72. Sambrook J., Russell D. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. vol. 1 Cold Spring Harbour, NY: Cold Spring Harbour Laboratory Press;
    [Google Scholar]
  73. Scallan E., Hoekstra R. M., Angulo F. J., Tauxe R. V., Widdowson M.-A., Roy S. L., Jones J. L., Griffin P. M. 2011; Foodborne illness acquired in the United States – major pathogens. Emerg Infect Dis 17:7–15[PubMed] [CrossRef]
    [Google Scholar]
  74. Schattner P., Brooks A. N., Lowe T. M. 2005; The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:web server issueW686–W689 [CrossRef][PubMed]
    [Google Scholar]
  75. Sigrist C. J. A., Cerutti L., de Castro E., Langendijk-Genevaux P. S., Bulliard V., Bairoch A., Hulo N. 2010; PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res 38:database issueD161–D166 [CrossRef][PubMed]
    [Google Scholar]
  76. Stothard P., Wishart D. S. 2005; Circular genome visualization and exploration using CGView. Bioinformatics 21:537–539 [CrossRef][PubMed]
    [Google Scholar]
  77. Suttle C. 2005; Crystal ball. The viriosphere: the greatest biological diversity on Earth and driver of global processes. Environ Microbiol 7:481–482 [CrossRef][PubMed]
    [Google Scholar]
  78. Thomas-Chollier M., Defrance M., Medina-Rivera A., Sand O., Herrmann C., Thieffry D., van Helden J. 2011; RSAT 2011: regulatory sequence analysis tools. Nucleic Acids Res 39:web server issueW86–W91 [CrossRef][PubMed]
    [Google Scholar]
  79. Thomson N. R., Clayton D. J., Windhorst D., Vernikos G., Davidson S., Churcher C., Quail M. A., Stevens M., Jones M. A. et al. 2008; Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res 18:1624–1637 [CrossRef][PubMed]
    [Google Scholar]
  80. Veesler D., Cambillau C. 2011; A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev 75:423–433 [CrossRef][PubMed]
    [Google Scholar]
  81. Voetsch A. C., Van Gilder T. J., Angulo F. J., Farley M. M., Shallow S., Marcus R., Cieslak P. R., Deneen V. C., Tauxe R. V. Emerging Infections Program FoodNet Working Group 2004; FoodNet estimate of the burden of illness caused by nontyphoidal Salmonella infections in the United States. Clin Infect Dis 38:Suppl. 3S127–S134 [CrossRef][PubMed]
    [Google Scholar]
  82. Whitman W. B., Coleman D. C., Wiebe W. J. 1998; Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583 [CrossRef][PubMed]
    [Google Scholar]
  83. Xu J., Hendrix R. W., Duda R. L. 2004; Conserved translational frameshift in dsDNA bacteriophage tail assembly genes. Mol Cell 16:11–21 [CrossRef][PubMed]
    [Google Scholar]
  84. Young R. 2002; Bacteriophage holins: deadly diversity. J Mol Microbiol Biotechnol 4:21–36[PubMed]
    [Google Scholar]
  85. Young I., Wang I.-N., Roof W. D. 2000; Phages will out: strategies of host cell lysis. Trends Microbiol 8:120–128 [CrossRef][PubMed]
    [Google Scholar]
  86. Zafar N., Mazumder R., Seto D. 2002; CoreGenes: a computational tool for identifying and cataloging “core” genes in a set of small genomes. BMC Bioinformatics 3:12 [CrossRef][PubMed]
    [Google Scholar]
  87. Zuber S., Ngom-Bru C., Barretto C., Bruttin A., Brüssow H., Denou E. 2007; Genome analysis of phage JS98 defines a fourth major subgroup of T4-like phages in Escherichia coli. . J Bacteriol 189:8206–8214 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.043331-0
Loading
/content/journal/jgv/10.1099/vir.0.043331-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error