1887

Abstract

The bacteriophage vB_SenS-Ent1 (Ent1) is a member of the family of tailed bacteriophages and infects a broad range of serovars of the enteric pathogen . The virion particle is composed of an icosahedral head 64 nm in diameter and a flexible, non-contractile tail of 116 × 8.5 nm possessing terminal fibres. The adsorption rate constant at 37 °C is 6.73 × 10 ml min. Latent and eclipse periods are 25 and 20 min, respectively, and the burst size is 35 progeny particles per cell after 35 min at 37 °C. Sequencing revealed a circularly permuted, 42 391 bp dsDNA genome containing 58 ORFs organized into four major transcriptional units. Comparisons with the genome sequences of other bacteriophages revealed a high level of nucleotide sequence identity and shared orthologous proteins with the phages SETP3, SE2 and KS7 (SS3e) and the phages K1G, K1H, K1ind1 and K1ind3.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.043331-0
2012-09-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/9/2046.html?itemId=/content/journal/jgv/10.1099/vir.0.043331-0&mimeType=html&fmt=ahah

References

  1. Abramoff M. D. , Magalhaes P. J. , Ram S. J. . ( 2004; ). Image processing with ImageJ. . Biophotonics Int 11:, 36–42.
    [Google Scholar]
  2. Acheson D. , Hohmann E. L . ( 2001; ). Nontyphoidal salmonellosis. . Clin Infect Dis 32:, 263–269. [CrossRef] [PubMed]
    [Google Scholar]
  3. Ackermann H.-W. . ( 2007; ). Salmonella phages examined in the electron microscope. . Methods Mol Biol 394:, 213–234. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ackermann H.-W. . ( 2009; ). Basic phage electron microscopy. . Methods Mol Biol 501:, 113–126. [CrossRef] [PubMed]
    [Google Scholar]
  5. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410.[PubMed] [CrossRef]
    [Google Scholar]
  6. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997; ). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef] [PubMed]
    [Google Scholar]
  7. Aziz R. K. , Bartels D. , Best A. A. , DeJongh M. , Disz T. , Edwards R. A. , Formsma K. , Gerdes S. , Glass E. M. et al. ( 2008; ). The RAST Server: rapid annotations using subsystems technology. . BMC Genomics 9:, 75. [CrossRef] [PubMed]
    [Google Scholar]
  8. Bailey T. L. , Williams N. , Misleh C. , Li W. W. . ( 2006; ). MEME: discovering and analyzing DNA and protein sequence motifs. . Nucleic Acids Res 34: (web server issue), W369–W373. [CrossRef] [PubMed]
    [Google Scholar]
  9. Besemer J. , Borodovsky M. . ( 1999; ). Heuristic approach to deriving models for gene finding. . Nucleic Acids Res 27:, 3911–3920. [CrossRef] [PubMed]
    [Google Scholar]
  10. Bjellqvist B. , Hughes G. J. , Pasquali C. , Paquet N. , Ravier F. , Sanchez J. C. , Frutiger S. , Hochstrasser D. . ( 1993; ). The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. . Electrophoresis 14:, 1023–1031. [CrossRef] [PubMed]
    [Google Scholar]
  11. Buchan D. W. , Ward S. M. , Lobley A. E. , Nugent T. C. , Bryson K. , Jones D. T. . ( 2010; ). Protein annotation and modelling servers at University College London. . Nucleic Acids Res 38: (Suppl.), W563–W568. [CrossRef] [PubMed]
    [Google Scholar]
  12. Bull J. J. , Vimr E. R. , Molineux I. J. . ( 2010; ). A tale of tails: sialidase is key to success in a model of phage therapy against K1-capsulated Escherichia coli. . Virology 398:, 79–86. [CrossRef] [PubMed]
    [Google Scholar]
  13. Byl C. V. , Kropinski A. M. . ( 2000; ). Sequence of the genome of Salmonella bacteriophage P22. . J Bacteriol 182:, 6472–6481. [CrossRef] [PubMed]
    [Google Scholar]
  14. Canchaya C. , Fournous G. , Chibani-Chennoufi S. , Dillmann M.-L. , Brüssow H. . ( 2003; ). Phage as agents of lateral gene transfer. . Curr Opin Microbiol 6:, 417–424. [CrossRef] [PubMed]
    [Google Scholar]
  15. Casjens S. R. . ( 2005; ). Comparative genomics and evolution of the tailed-bacteriophages. . Curr Opin Microbiol 8:, 451–458. [CrossRef] [PubMed]
    [Google Scholar]
  16. Casjens S. R. , Thuman-Commike P. A. . ( 2011; ). Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. . Virology 411:, 393–415. [CrossRef] [PubMed]
    [Google Scholar]
  17. Cresawn S. G. , Bogel M. , Day N. , Jacobs-Sera D. , Hendrix R. W. , Hatfull G. F. . ( 2011; ). Phamerator: a bioinformatic tool for comparative bacteriophage genomics. . BMC Bioinformatics 12:, 395. [CrossRef] [PubMed]
    [Google Scholar]
  18. Darling A. E. , Mau B. , Perna N. T. . ( 2010; ). progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. . PLoS ONE 5:, e11147. [CrossRef] [PubMed]
    [Google Scholar]
  19. De Lappe N. , Doran G. , O’Connor J. , O’Hare C. , Cormican M. . ( 2009; ). Characterization of bacteriophages used in the Salmonella enterica serovar Enteritidis phage-typing scheme. . J Med Microbiol 58:, 86–93. [CrossRef] [PubMed]
    [Google Scholar]
  20. Delcher A. L. , Harmon D. , Kasif S. , White O. , Salzberg S. L. . ( 1999; ). Improved microbial gene identification with GLIMMER.. Nucleic Acids Res 27:, 4636–4641. [CrossRef] [PubMed]
    [Google Scholar]
  21. Dröge A. , Santos M. A. , Stiege A. C. , Alonso J. C. , Lurz R. , Trautner T. A. , Tavares P. . ( 2000; ). Shape and DNA packaging activity of bacteriophage SPP1 procapsid: protein components and interactions during assembly. . J Mol Biol 296:, 117–132. [CrossRef] [PubMed]
    [Google Scholar]
  22. ECDC ( 2010; ). Annual Epidemiological Report on Communicable Diseases in Europe 2010. Stockholm:: European Centre for Disease Prevention and Control;.
    [Google Scholar]
  23. Figueroa-Bossi N. , Uzzau S. , Maloriol D. , Bossi L. . ( 2001; ). Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. . Mol Microbiol 39:, 260–271. [CrossRef] [PubMed]
    [Google Scholar]
  24. Fraser J. S. , Maxwell K. L. , Davidson A. R. . ( 2007; ). Immunoglobulin-like domains on bacteriophage: weapons of modest damage?. Curr Opin Microbiol 10:, 382–387. [CrossRef] [PubMed]
    [Google Scholar]
  25. Gilcrease E. B. , Winn-Stapley D. A. , Hewitt F. C. , Joss L. , Casjens S. R. . ( 2005; ). Nucleotide sequence of the head assembly gene cluster of bacteriophage L and decoration protein characterization. . J Bacteriol 187:, 2050–2057. [CrossRef] [PubMed]
    [Google Scholar]
  26. Grimont A. D. , Weill F.-X. . ( 2007;). Antigenic Formulae of the Salmonella Serovars, World Health Organisation Collaborating Centre for Reference and Research on Salmonella, , 9th edn.. Paris:; Pasteur Institute;.
    [Google Scholar]
  27. Gruber A. R. , Lorenz R. , Bernhart S. H. , Neuböck R. , Hofacker I. L. . ( 2008; ). The Vienna RNA websuite. . Nucleic Acids Res 36: (web server issue), W70–W74. [CrossRef] [PubMed]
    [Google Scholar]
  28. Hanning I. B. , Nutt J. D. , Ricke S. C. . ( 2009; ). Salmonellosis outbreaks in the United States due to fresh produce: sources and potential intervention measures. . Foodborne Pathog Dis 6:, 635–648. [CrossRef] [PubMed]
    [Google Scholar]
  29. Hatfull G. F. . ( 2008; ). Bacteriophage genomics. . Curr Opin Microbiol 11:, 447–453. [CrossRef] [PubMed]
    [Google Scholar]
  30. Hatfull G. F. , Hendrix R. W. . ( 2011; ). Bacteriophages and their genomes. . Curr Opin Virol 1:, 298–303. [CrossRef] [PubMed]
    [Google Scholar]
  31. Hatfull G. F. , Cresawn S. G. , Hendrix R. W. . ( 2008; ). Comparative genomics of the mycobacteriophages: insights into bacteriophage evolution. . Res Microbiol 159:, 332–339. [CrossRef] [PubMed]
    [Google Scholar]
  32. Henthorn K. S. , Friedman D. I. . ( 1995; ). Identification of related genes in phages phi 80 and P22 whose products are inhibitory for phage growth in Escherichia coli IHF mutants. . J Bacteriol 177:, 3185–3190.[PubMed]
    [Google Scholar]
  33. Hooton S. P. , Timms A. R. , Rowsell J. , Wilson R. , Connerton I. F. . ( 2011; ). Salmonella Typhimurium-specific bacteriophage ΦSH19 and the origins of species specificity in the Vi01-like phage family. . Virol J 8:, 498. [CrossRef] [PubMed]
    [Google Scholar]
  34. Ilyina T. V. , Gorbalenya A. E. , Koonin E. V. . ( 1992; ). Organization and evolution of bacterial and bacteriophage primase-helicase systems. . J Mol Evol 34:, 351–357. [CrossRef] [PubMed]
    [Google Scholar]
  35. Jiang X. , Jiang H. , Li C. , Wang S. , Mi Z. , An X. , Chen J. , Tong Y. . ( 2011; ). Sequence characteristics of T4-like bacteriophage IME08 benome termini revealed by high throughput sequencing. . Virol J 8:, 194. [CrossRef] [PubMed]
    [Google Scholar]
  36. Jones D. T. . ( 1999; ). Protein secondary structure prediction based on position-specific scoring matrices. . J Mol Biol 292:, 195–202. [CrossRef] [PubMed]
    [Google Scholar]
  37. Kaliniene L. , Klausa V. , Zajančkauskaite A. , Nivinskas R. , Truncaite L. . ( 2011; ). Genome of low-temperature T4-related bacteriophage vB_EcoM-VR7. . Arch Virol 156:, 1913–1916. [CrossRef] [PubMed]
    [Google Scholar]
  38. Karumidze N. , Thomas J. A. , Kvatadze N. , Goderdzishvili M. , Hakala K. W. , Weintraub S. T. , Alavidze Z. , Hardies S. C. . ( 2012; ). Characterization of lytic Pseudomonas aeruginosa bacteriophages via biological properties and genomic sequences. . Appl Microbiol Biotechnol 94:, 1609–1617.[PubMed] [CrossRef]
    [Google Scholar]
  39. Katsura I. , Hendrix R. W. . ( 1984; ). Length determination in bacteriophage lambda tails. . Cell 39:, 691–698. [CrossRef] [PubMed]
    [Google Scholar]
  40. King A. M. Q. , Adams M. J. , Carstens E. B. , Lefkowitz E. J. . (editors) ( 2011; ). Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses. London:: Elsevier/Academic Press;.
    [Google Scholar]
  41. Kingsford C. L. , Ayanbule K. , Salzberg S. L. . ( 2007; ). Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. . Genome Biol 8:, R22. [CrossRef] [PubMed]
    [Google Scholar]
  42. Krogh A. , Larsson B. , von Heijne G. , Sonnhammer E. L. L. . ( 2001; ). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. . J Mol Biol 305:, 567–580. [CrossRef] [PubMed]
    [Google Scholar]
  43. Kropinski A. M. . ( 2009; ). Measurement of the rate of attachment of bacteriophage to cells. . Methods Mol Biol 501:, 151–155. [CrossRef] [PubMed]
    [Google Scholar]
  44. Kropinski A. M. , Sulakvelidze A. , Konczy P. , Poppe C. . ( 2007; ). Salmonella phages and prophages–genomics and practical aspects. . Methods Mol Biol 394:, 133–175. [CrossRef] [PubMed]
    [Google Scholar]
  45. Kropinski A. M. , Prangishvili D. , Lavigne R. . ( 2009a; ). Position paper: the creation of a rational scheme for the nomenclature of viruses of Bacteria and Archaea. . Environ Microbiol 11:, 2775–2777. [CrossRef] [PubMed]
    [Google Scholar]
  46. Kropinski A. M. , Mazzocco A. , Waddell T. E. , Lingohr E. , Johnson R. P. . ( 2009b; ). Enumeration of bacteriophages by double agar overlay plaque assay. . Methods Mol Biol 501:, 69–76. [CrossRef] [PubMed]
    [Google Scholar]
  47. Krumsiek J. , Arnold R. , Rattei T. . ( 2007; ). Gepard: a rapid and sensitive tool for creating dotplots on genome scale. . Bioinformatics 23:, 1026–1028. [CrossRef] [PubMed]
    [Google Scholar]
  48. Kutter E. . ( 2009; ). Phage host range and efficiency of plating. . Methods Mol Biol 501:, 141–149. [CrossRef] [PubMed]
    [Google Scholar]
  49. Laslett D. , Canback B. . ( 2004; ). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. . Nucleic Acids Res 32:, 11–16. [CrossRef] [PubMed]
    [Google Scholar]
  50. Lavigne R. , Seto D. , Mahadevan P. , Ackermann H.-W. , Kropinski A. M. . ( 2008; ). Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. . Res Microbiol 159:, 406–414. [CrossRef] [PubMed]
    [Google Scholar]
  51. Lavigne R. , Darius P. , Summer E. J. , Seto D. , Mahadevan P. , Nilsson A. S. , Ackermann H. W. , Kropinski A. M. . ( 2009; ). Classification of Myoviridae bacteriophages using protein sequence similarity. . BMC Microbiol 9:, 224. [CrossRef] [PubMed]
    [Google Scholar]
  52. Leplae R. , Lima-Mendez G. , Toussaint A. . ( 2010; ). ACLAME: a CLAssification of Mobile genetic Elements, update 2010. . Nucleic Acids Res 38: (database issue), D57–D61. [CrossRef] [PubMed]
    [Google Scholar]
  53. Lingohr E. , Frost S. , Johnson R. P. . ( 2009; ). Determination of bacteriophage genome size by pulsed-field gel electrophoresis. . Methods Mol Biol 502:, 19–25. [CrossRef] [PubMed]
    [Google Scholar]
  54. Liu J. , Dehbi M. , Moeck G. , Arhin F. , Bauda P. , Bergeron D. , Callejo M. , Ferretti V. , Ha N. et al. ( 2004; ). Antimicrobial drug discovery through bacteriophage genomics. . Nat Biotechnol 22:, 185–191. [CrossRef] [PubMed]
    [Google Scholar]
  55. Loessner M. J. , Inman R. B. , Lauer P. , Calendar R. . ( 2000; ). Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. . Mol Microbiol 35:, 324–340. [CrossRef] [PubMed]
    [Google Scholar]
  56. Lu M. J. , Stierhof Y. D. , Henning U. . ( 1993; ). Location and unusual membrane topology of the immunity protein of the Escherichia coli phage T4. . J Virol 67:, 4905–4913.[PubMed]
    [Google Scholar]
  57. Marchler-Bauer A. , Lu S. , Anderson J. B. , Chitsaz F. , Derbyshire M. K. , DeWeese-Scott C. , Fong J. H. , Geer L. Y. , Geer R. C. et al. ( 2011; ). CDD: a Conserved Domain Database for the functional annotation of proteins. . Nucleic Acids Res 39: (database issue), D225–D229. [CrossRef] [PubMed]
    [Google Scholar]
  58. Mc Grath S. , Neve H. , Seegers J. F. M. L. , Eijlander R. , Vegge C. S. , Brøndsted L. , Heller K. J. , Fitzgerald G. F. , Vogensen F. K. , van Sinderen D. . ( 2006; ). Anatomy of a lactococcal phage tail. . J Bacteriol 188:, 3972–3982. [CrossRef] [PubMed]
    [Google Scholar]
  59. McClelland M. , Sanderson K. E. , Spieth J. , Clifton S. W. , Latreille P. , Courtney L. , Porwollik S. , Ali J. , Dante M. et al. ( 2001; ). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. . Nature 413:, 852–856. [CrossRef] [PubMed]
    [Google Scholar]
  60. McNair K. , Bailey B. A. , Edwards R. A. . ( 2012; ). PHACTS, a computational approach to classifying the lifestyle of phages. . Bioinformatics 28:, 614–618. [CrossRef] [PubMed]
    [Google Scholar]
  61. Mitra A. , Kesarwani A. K. , Pal D. , Nagaraja V. . ( 2011; ). WebGeSTer DB – a transcription terminator database. . Nucleic Acids Res 39: (database issue), D129–D135. [CrossRef] [PubMed]
    [Google Scholar]
  62. Perler F. B. . ( 2002; ). InBase: the intein database. . Nucleic Acids Res 30:, 383–384. [CrossRef] [PubMed]
    [Google Scholar]
  63. Perler F. B. , Olsen G. J. , Adam E. . ( 1997; ). Compilation and analysis of intein sequences. . Nucleic Acids Res 25:, 1087–1093. [CrossRef] [PubMed]
    [Google Scholar]
  64. Petersen T. N. , Brunak S. , von Heijne G. , Nielsen H. . ( 2011; ). SignalP 4.0: discriminating signal peptides from transmembrane regions. . Nat Methods 8:, 785–786. [CrossRef] [PubMed]
    [Google Scholar]
  65. Punta M. , Coggill P. C. , Eberhardt R. Y. , Mistry J. , Tate J. , Boursnell C. , Pang N. , Forslund K. , Ceric G. et al. ( 2012; ). The Pfam protein families database. . Nucleic Acids Res 40: (database issue), D290–D301. [CrossRef] [PubMed]
    [Google Scholar]
  66. Quevillon E. , Silventoinen V. , Pillai S. , Harte N. , Mulder N. , Apweiler R. , Lopez R. . ( 2005; ). InterProScan: protein domains identifier. . Nucleic Acids Res 33: (web server issue), W116–W120. [CrossRef] [PubMed]
    [Google Scholar]
  67. Reen F. J. , Boyd E. F. , Porwollik S. , Murphy B. P. , Gilroy D. , Fanning S. , McClelland M. . ( 2005; ). Genomic comparisons of Salmonella enterica serovar Dublin, Agona, and Typhimurium strains recently isolated from milk filters and bovine samples from Ireland, using a Salmonella microarray. . Appl Environ Microbiol 71:, 1616–1625. [CrossRef] [PubMed]
    [Google Scholar]
  68. Rees C. E. D. , Dodd C. E. R. . ( 2006; ). Phage for rapid detection and control of bacterial pathogens in food. . Adv Appl Microbiol 59:, 159–186. [CrossRef] [PubMed]
    [Google Scholar]
  69. Rohwer F. , Edwards R. . ( 2002; ). The Phage Proteomic Tree: a genome-based taxonomy for phage. . J Bacteriol 184:, 4529–4535. [CrossRef] [PubMed]
    [Google Scholar]
  70. Roucourt B. , Lavigne R. . ( 2009; ). The role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome. . Environ Microbiol 11:, 2789–2805. [CrossRef] [PubMed]
    [Google Scholar]
  71. Rutherford K. , Parkhill J. , Crook J. , Horsnell T. , Rice P. , Rajandream M. A. , Barrell B. . ( 2000; ). Artemis: sequence visualization and annotation. . Bioinformatics 16:, 944–945. [CrossRef] [PubMed]
    [Google Scholar]
  72. Sambrook J. , Russell D. . ( 2001; ). Molecular Cloning: a Laboratory Manual, , 3rd edn., vol. 1. Cold Spring Harbour, NY:: Cold Spring Harbour Laboratory Press;.
    [Google Scholar]
  73. Scallan E. , Hoekstra R. M. , Angulo F. J. , Tauxe R. V. , Widdowson M.-A. , Roy S. L. , Jones J. L. , Griffin P. M. . ( 2011; ). Foodborne illness acquired in the United States – major pathogens. . Emerg Infect Dis 17:, 7–15.[PubMed] [CrossRef]
    [Google Scholar]
  74. Schattner P. , Brooks A. N. , Lowe T. M. . ( 2005; ). The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. . Nucleic Acids Res 33: (web server issue), W686–W689. [CrossRef] [PubMed]
    [Google Scholar]
  75. Sigrist C. J. A. , Cerutti L. , de Castro E. , Langendijk-Genevaux P. S. , Bulliard V. , Bairoch A. , Hulo N. . ( 2010; ). PROSITE, a protein domain database for functional characterization and annotation. . Nucleic Acids Res 38: (database issue), D161–D166. [CrossRef] [PubMed]
    [Google Scholar]
  76. Stothard P. , Wishart D. S. . ( 2005; ). Circular genome visualization and exploration using CGView. . Bioinformatics 21:, 537–539. [CrossRef] [PubMed]
    [Google Scholar]
  77. Suttle C. . ( 2005; ). Crystal ball. The viriosphere: the greatest biological diversity on Earth and driver of global processes. . Environ Microbiol 7:, 481–482. [CrossRef] [PubMed]
    [Google Scholar]
  78. Thomas-Chollier M. , Defrance M. , Medina-Rivera A. , Sand O. , Herrmann C. , Thieffry D. , van Helden J. . ( 2011; ). RSAT 2011: regulatory sequence analysis tools. . Nucleic Acids Res 39: (web server issue), W86–W91. [CrossRef] [PubMed]
    [Google Scholar]
  79. Thomson N. R. , Clayton D. J. , Windhorst D. , Vernikos G. , Davidson S. , Churcher C. , Quail M. A. , Stevens M. , Jones M. A. et al. ( 2008; ). Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. . Genome Res 18:, 1624–1637. [CrossRef] [PubMed]
    [Google Scholar]
  80. Veesler D. , Cambillau C. . ( 2011; ). A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. . Microbiol Mol Biol Rev 75:, 423–433. [CrossRef] [PubMed]
    [Google Scholar]
  81. Voetsch A. C. , Van Gilder T. J. , Angulo F. J. , Farley M. M. , Shallow S. , Marcus R. , Cieslak P. R. , Deneen V. C. , Tauxe R. V. . Emerging Infections Program FoodNet Working Group ( 2004; ). FoodNet estimate of the burden of illness caused by nontyphoidal Salmonella infections in the United States. . Clin Infect Dis 38: (Suppl. 3), S127–S134. [CrossRef] [PubMed]
    [Google Scholar]
  82. Whitman W. B. , Coleman D. C. , Wiebe W. J. . ( 1998; ). Prokaryotes: the unseen majority. . Proc Natl Acad Sci U S A 95:, 6578–6583. [CrossRef] [PubMed]
    [Google Scholar]
  83. Xu J. , Hendrix R. W. , Duda R. L. . ( 2004; ). Conserved translational frameshift in dsDNA bacteriophage tail assembly genes. . Mol Cell 16:, 11–21. [CrossRef] [PubMed]
    [Google Scholar]
  84. Young R. . ( 2002; ). Bacteriophage holins: deadly diversity. . J Mol Microbiol Biotechnol 4:, 21–36.[PubMed]
    [Google Scholar]
  85. Young I. , Wang I.-N. , Roof W. D. . ( 2000; ). Phages will out: strategies of host cell lysis. . Trends Microbiol 8:, 120–128. [CrossRef] [PubMed]
    [Google Scholar]
  86. Zafar N. , Mazumder R. , Seto D. . ( 2002; ). CoreGenes: a computational tool for identifying and cataloging “core” genes in a set of small genomes. . BMC Bioinformatics 3:, 12. [CrossRef] [PubMed]
    [Google Scholar]
  87. Zuber S. , Ngom-Bru C. , Barretto C. , Bruttin A. , Brüssow H. , Denou E. . ( 2007; ). Genome analysis of phage JS98 defines a fourth major subgroup of T4-like phages in Escherichia coli. . J Bacteriol 189:, 8206–8214. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.043331-0
Loading
/content/journal/jgv/10.1099/vir.0.043331-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error