1887

Abstract

The human immunodeficiency virus type 1 accessory protein Vif is important for viral infectivity because it counteracts the antiviral protein APOBEC3G (A3G). P metabolic labelling of stimulated cells revealed phosphorylation of the control protein, whereas no serine/threonine phosphorylation was detected for Vif or the A3G protein. These data were confirmed by kinase assays using active recombinant kinase. Mitogen-activated protein kinase/extracellular signal-regulated kinase 2 efficiently phosphorylated its target ELK, but failed to phosphorylate Vif. Putative serine/threonine phosphorylation point mutations in Vif (T96, S144, S165, T188) using single-round infection assays demonstrated that these mutations did not alter Vif activity, with the exception of Vif.T96E. Interestingly, T96E and not T96A was functionally impaired, indicating that this residue is critical for Vif–A3G physical interaction and activity. Our data suggest that Vif and A3G are not serine/threonine phosphorylated in human cells and phosphorylation is not linked to their functional activities.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.043273-0
2012-11-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/11/2425.html?itemId=/content/journal/jgv/10.1099/vir.0.043273-0&mimeType=html&fmt=ahah

References

  1. Courcoul M., Patience C., Rey F., Blanc D., Harmache A., Sire J., Vigne R., Spire B.. ( 1995;). Peripheral blood mononuclear cells produce normal amounts of defective Vif- human immunodeficiency virus type 1 particles which are restricted for the preretrotranscription steps. . J Virol 69:, 2068–2074.[PubMed]
    [Google Scholar]
  2. Dang Y., Wang X., Zhou T., York I. A., Zheng Y. H.. ( 2009;). Identification of a novel WxSLVK motif in the N terminus of human immunodeficiency virus and simian immunodeficiency virus Vif that is critical for APOBEC3G and APOBEC3F neutralization. . J Virol 83:, 8544–8552. [CrossRef][PubMed]
    [Google Scholar]
  3. Dang Y., Davis R. W., York I. A., Zheng Y. H.. ( 2010a;). Identification of 81LGxGxxIxW89 and 171EDRW174 domains from human immunodeficiency virus type 1 Vif that regulate APOBEC3G and APOBEC3F neutralizing activity. . J Virol 84:, 5741–5750. [CrossRef][PubMed]
    [Google Scholar]
  4. Dang Y., Wang X., York I. A., Zheng Y. H.. ( 2010b;). Identification of a critical T(Q/D/E)x5ADx2(I/L) motif from primate lentivirus Vif proteins that regulate APOBEC3G and APOBEC3F neutralizing activity. . J Virol 84:, 8561–8570. [CrossRef][PubMed]
    [Google Scholar]
  5. Demorest Z. L., Li M., Harris R. S.. ( 2011;). Phosphorylation directly regulates the intrinsic DNA cytidine deaminase activity of activation-induced deaminase and APOBEC3G protein. . J Biol Chem 286:, 26568–26575. [CrossRef][PubMed]
    [Google Scholar]
  6. Donahue J. P., Vetter M. L., Mukhtar N. A., D’Aquila R. T.. ( 2008;). The HIV-1 Vif PPLP motif is necessary for human APOBEC3G binding and degradation. . Virology 377:, 49–53. [CrossRef][PubMed]
    [Google Scholar]
  7. Donello J. E., Beeche A. A., Smith G. J. III, Lucero G. R., Hope T. J.. ( 1996;). The hepatitis B virus posttranscriptional regulatory element is composed of two subelements. . J Virol 70:, 4345–4351.[PubMed]
    [Google Scholar]
  8. Fisher A. G., Ensoli B., Ivanoff L., Chamberlain M., Petteway S., Ratner L., Gallo R. C., Wong-Staal F.. ( 1987;). The sor gene of HIV-1 is required for efficient virus transmission in vitro. . Science 237:, 888–893. [CrossRef][PubMed]
    [Google Scholar]
  9. Gabuzda D. H., Lawrence K., Langhoff E., Terwilliger E., Dorfman T., Haseltine W. A., Sodroski J.. ( 1992;). Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. . J Virol 66:, 6489–6495.[PubMed]
    [Google Scholar]
  10. He Z., Zhang W., Chen G., Xu R., Yu X. F.. ( 2008;). Characterization of conserved motifs in HIV-1 Vif required for APOBEC3G and APOBEC3F interaction. . J Mol Biol 381:, 1000–1011. [CrossRef][PubMed]
    [Google Scholar]
  11. Kao S., Khan M. A., Miyagi E., Plishka R., Buckler-White A., Strebel K.. ( 2003;). The human immunodeficiency virus type 1 Vif protein reduces intracellular expression and inhibits packaging of APOBEC3G (CEM15), a cellular inhibitor of virus infectivity. . J Virol 77:, 11398–11407. [CrossRef][PubMed]
    [Google Scholar]
  12. Kao S., Miyagi E., Khan M. A., Takeuchi H., Opi S., Goila-Gaur R., Strebel K.. ( 2004;). Production of infectious human immunodeficiency virus type 1 does not require depletion of APOBEC3G from virus-producing cells. . Retrovirology 1:, 27. [CrossRef][PubMed]
    [Google Scholar]
  13. Kao S., Goila-Gaur R., Miyagi E., Khan M. A., Opi S., Takeuchi H., Strebel K.. ( 2007;). Production of infectious virus and degradation of APOBEC3G are separable functional properties of human immunodeficiency virus type 1 Vif. . Virology 369:, 329–339. [CrossRef][PubMed]
    [Google Scholar]
  14. Luo K., Xiao Z., Ehrlich E., Yu Y., Liu B., Zheng S., Yu X. F.. ( 2005;). Primate lentiviral virion infectivity factors are substrate receptors that assemble with cullin 5-E3 ligase through a HCCH motif to suppress APOBEC3G. . Proc Natl Acad Sci U S A 102:, 11444–11449. [CrossRef][PubMed]
    [Google Scholar]
  15. Mariani R., Chen D., Schröfelbauer B., Navarro F., König R., Bollman B., Münk C., Nymark-McMahon H., Landau N. R.. ( 2003;). Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. . Cell 114:, 21–31. [CrossRef][PubMed]
    [Google Scholar]
  16. Marin M., Rose K. M., Kozak S. L., Kabat D.. ( 2003;). HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. . Nat Med 9:, 1398–1403. [CrossRef][PubMed]
    [Google Scholar]
  17. Mehle A., Goncalves J., Santa-Marta M., McPike M., Gabuzda D.. ( 2004;). Phosphorylation of a novel SOCS-box regulates assembly of the HIV-1 Vif-Cul5 complex that promotes APOBEC3G degradation. . Genes Dev 18:, 2861–2866. [CrossRef][PubMed]
    [Google Scholar]
  18. Mehle A., Strack B., Ancuta P., Zhang C., McPike M., Gabuzda D.. ( 2004;). Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway. . J Biol Chem 279:, 7792–7798. [CrossRef][PubMed]
    [Google Scholar]
  19. Mehle A., Thomas E. R., Rajendran K. S., Gabuzda D.. ( 2006;). A zinc-binding region in Vif binds Cul5 and determines cullin selection. . J Biol Chem 281:, 17259–17265. [CrossRef][PubMed]
    [Google Scholar]
  20. Opi S., Kao S., Goila-Gaur R., Khan M. A., Miyagi E., Takeuchi H., Strebel K.. ( 2007;). Human immunodeficiency virus type 1 Vif inhibits packaging and antiviral activity of a degradation-resistant APOBEC3G variant. . J Virol 81:, 8236–8246. [CrossRef][PubMed]
    [Google Scholar]
  21. Pery E., Rajendran K. S., Brazier A. J., Gabuzda D.. ( 2009;). Regulation of APOBEC3 proteins by a novel YXXL motif in human immunodeficiency virus type 1 Vif and simian immunodeficiency virus SIVagm Vif. . J Virol 83:, 2374–2381. [CrossRef][PubMed]
    [Google Scholar]
  22. Russell R. A., Pathak V. K.. ( 2007;). Identification of two distinct human immunodeficiency virus type 1 Vif determinants critical for interactions with human APOBEC3G and APOBEC3F. . J Virol 81:, 8201–8210. [CrossRef][PubMed]
    [Google Scholar]
  23. Santa-Marta M., da Silva F. A., Fonseca A. M., Goncalves J.. ( 2005;). HIV-1 Vif can directly inhibit apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G-mediated cytidine deamination by using a single amino acid interaction and without protein degradation. . J Biol Chem 280:, 8765–8775. [CrossRef][PubMed]
    [Google Scholar]
  24. Sheehy A. M., Gaddis N. C., Malim M. H.. ( 2003;). The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. . Nat Med 9:, 1404–1407. [CrossRef][PubMed]
    [Google Scholar]
  25. Shirakawa K., Takaori-Kondo A., Yokoyama M., Izumi T., Matsui M., Io K., Sato T., Sato H., Uchiyama T.. ( 2008;). Phosphorylation of APOBEC3G by protein kinase A regulates its interaction with HIV-1 Vif. . Nat Struct Mol Biol 15:, 1184–1191. [CrossRef][PubMed]
    [Google Scholar]
  26. Stanley B. J., Ehrlich E. S., Short L., Yu Y., Xiao Z., Yu X. F., Xiong Y.. ( 2008;). Structural insight into the human immunodeficiency virus Vif SOCS box and its role in human E3 ubiquitin ligase assembly. . J Virol 82:, 8656–8663. [CrossRef][PubMed]
    [Google Scholar]
  27. Stopak K., de Noronha C., Yonemoto W., Greene W. C.. ( 2003;). HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. . Mol Cell 12:, 591–601. [CrossRef][PubMed]
    [Google Scholar]
  28. Strebel K., Daugherty D., Clouse K., Cohen D., Folks T., Martin M. A.. ( 1987;). The HIV A (sor) gene product is essential for virus infectivity. . Nature 328:, 728–730. [CrossRef][PubMed]
    [Google Scholar]
  29. von Schwedler U., Song J., Aiken C., Trono D.. ( 1993;). Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. . J Virol 67:, 4945–4955.[PubMed]
    [Google Scholar]
  30. Wolfe L. S., Stanley B. J., Liu C., Eliason W. K., Xiong Y.. ( 2010;). Dissection of the HIV Vif interaction with human E3 ubiquitin ligase. . J Virol 84:, 7135–7139. [CrossRef][PubMed]
    [Google Scholar]
  31. Xiao Z., Ehrlich E., Yu Y., Luo K., Wang T., Tian C., Yu X. F.. ( 2006;). Assembly of HIV-1 Vif-Cul5 E3 ubiquitin ligase through a novel zinc-binding domain-stabilized hydrophobic interface in Vif. . Virology 349:, 290–299. [CrossRef][PubMed]
    [Google Scholar]
  32. Xiao Z., Xiong Y., Zhang W., Tan L., Ehrlich E., Guo D., Yu X. F.. ( 2007;). Characterization of a novel Cullin5 binding domain in HIV-1 Vif. . J Mol Biol 373:, 541–550. [CrossRef][PubMed]
    [Google Scholar]
  33. Yang X., Gabuzda D.. ( 1998;). Mitogen-activated protein kinase phosphorylates and regulates the HIV-1 Vif protein. . J Biol Chem 273:, 29879–29887. [CrossRef][PubMed]
    [Google Scholar]
  34. Yang X., Goncalves J., Gabuzda D.. ( 1996;). Phosphorylation of Vif and its role in HIV-1 replication. . J Biol Chem 271:, 10121–10129. [CrossRef][PubMed]
    [Google Scholar]
  35. Yang S., Sun Y., Zhang H.. ( 2001;). The multimerization of human immunodeficiency virus type I Vif protein: a requirement for Vif function in the viral life cycle. . J Biol Chem 276:, 4889–4893. [CrossRef][PubMed]
    [Google Scholar]
  36. Yu X., Yu Y., Liu B., Luo K., Kong W., Mao P., Yu X. F.. ( 2003;). Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. . Science 302:, 1056–1060. [CrossRef][PubMed]
    [Google Scholar]
  37. Yu Y., Xiao Z., Ehrlich E. S., Yu X., Yu X. F.. ( 2004;). Selective assembly of HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines. . Genes Dev 18:, 2867–2872. [CrossRef][PubMed]
    [Google Scholar]
  38. Zielonka J., Marino D., Hofmann H., Yuhki N., Löchelt M., Münk C.. ( 2010;). Vif of feline immunodeficiency virus from domestic cats protects against APOBEC3 restriction factors from many felids. . J Virol 84:, 7312–7324. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.043273-0
Loading
/content/journal/jgv/10.1099/vir.0.043273-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error