1887

Abstract

The full coding sequences of two novel human enterovirus (HEV)-C serotypes 105 and 116, sampled in the Republic of the Congo in 2010 and in Russia in 2011, were identified in this study. Enterovirus (EV)-105 was closest to EV-104 in the 5′ NTR and to EV-109 in the coding genome region. It had the same unconventional 5′ NTR as EV-104 and EV-109. The non-cytopathogenic EV-116 was phylogenetically close to coxsackievirus (CV)-A1, CV-A19 and CV-A22, which also cannot be propagated in routinely used cell cultures. There were signs of recombination within this subgroup of HEV-C; however, recombination with conventional HEV-C was restricted, implying partial reproductive isolation. As there is also evidence of different permissive replication systems and distinct genetic properties of these subgroups, they may represent subspecies of the HEV-C species or different stages of speciation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.043216-0
2012-11-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/11/2357.html?itemId=/content/journal/jgv/10.1099/vir.0.043216-0&mimeType=html&fmt=ahah

References

  1. Brown B., Oberste M. S., Maher K., Pallansch M. A.. ( 2003;). Complete genomic sequencing shows that polioviruses and members of human enterovirus species C are closely related in the noncapsid coding region. . J Virol 77:, 8973–8984. [CrossRef][PubMed]
    [Google Scholar]
  2. Brown B. A., Maher K., Flemister M. R., Naraghi-Arani P., Uddin M., Oberste M. S., Pallansch M. A.. ( 2009;). Resolving ambiguities in genetic typing of human enterovirus species C clinical isolates and identification of enterovirus 96, 99 and 102. . J Gen Virol 90:, 1713–1723. [CrossRef][PubMed]
    [Google Scholar]
  3. Combelas N., Holmblat B., Joffret M. L., Colbère-Garapin F., Delpeyroux F.. ( 2011;). Recombination between poliovirus and coxsackie A viruses of species C: a model of viral genetic plasticity and emergence. . Viruses 3:, 1460–1484. [CrossRef][PubMed]
    [Google Scholar]
  4. Grard G., Drexler J. F., Lekana-Douki S., Caron M., Lukashev A., Nkoghe D., Gonzalez J. P., Drosten C., Leroy E.. ( 2010;). Type 1 wild poliovirus and putative enterovirus 109 in an outbreak of acute flaccid paralysis in Congo, October–November 2010. . Euro Surveill 15:, 19723.[PubMed]
    [Google Scholar]
  5. Han J. Q., Townsend H. L., Jha B. K., Paranjape J. M., Silverman R. H., Barton D. J.. ( 2007;). A phylogenetically conserved RNA structure in the poliovirus open reading frame inhibits the antiviral endoribonuclease RNase L.. J Virol 81:, 5561–5572. [CrossRef][PubMed]
    [Google Scholar]
  6. Harvala H., Sharp C. P., Ngole E. M., Delaporte E., Peeters M., Simmonds P.. ( 2011;). Detection and genetic characterization of enteroviruses circulating among wild populations of chimpanzees in Cameroon: relationship with human and simian enteroviruses. . J Virol 85:, 4480–4486. [CrossRef][PubMed]
    [Google Scholar]
  7. Knowles N. J., Hovi T., Hyypia T., King A. M. Q., Lindberg A. M., Pallansch M. A., Palmenberg A. C., Simmonds P., Skern T.. & other authors ( 2011;). Family Picornaviridae. . In Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses, pp. 855–880. Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J... San Diego:: Elsevier Academic Press;.
    [Google Scholar]
  8. Liu H. M., Zheng D. P., Zhang L. B., Oberste M. S., Kew O. M., Pallansch M. A.. ( 2003;). Serial recombination during circulation of type 1 wild-vaccine recombinant polioviruses in China. . J Virol 77:, 10994–11005. [CrossRef][PubMed]
    [Google Scholar]
  9. Lukashev A. N.. ( 2005;). Role of recombination in evolution of enteroviruses. . Rev Med Virol 15:, 157–167. [CrossRef][PubMed]
    [Google Scholar]
  10. Lukashev A. N.. ( 2010;). Recombination among picornaviruses. . Rev Med Virol 20:, 327–337. [CrossRef][PubMed]
    [Google Scholar]
  11. Norder H., Bjerregaard L., Magnius L., Lina B., Aymard M., Chomel J. J.. ( 2003;). Sequencing of ‘untypable’ enteroviruses reveals two new types, EV-77 and EV-78, within human enterovirus type B and substitutions in the BC loop of the VP1 protein for known types. . J Gen Virol 84:, 827–836. [CrossRef][PubMed]
    [Google Scholar]
  12. Oberste M. S., Maher K., Kilpatrick D. R., Pallansch M. A.. ( 1999;). Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. . J Virol 73:, 1941–1948.[PubMed]
    [Google Scholar]
  13. Oberste M. S., Maher K., Michele S. M., Belliot G., Uddin M., Pallansch M. A.. ( 2005;). Enteroviruses 76, 89, 90 and 91 represent a novel group within the species Human enterovirus A. . J Gen Virol 86:, 445–451. [CrossRef][PubMed]
    [Google Scholar]
  14. Pallansch M., Roos R.. ( 2007;). Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. . In Fields Virology, , 5th edn., pp. 840–893. Edited by Knipe D. M., Howley P. M... Philadelphia:: Lippincott-Raven;.
    [Google Scholar]
  15. Santti J., Hyypiä T., Kinnunen L., Salminen M.. ( 1999;). Evidence of recombination among enteroviruses. . J Virol 73:, 8741–8749.[PubMed]
    [Google Scholar]
  16. Schmidt N. J., Ho H. H., Lennette E. H.. ( 1975;). Propagation and isolation of group A coxsackieviruses in RD cells. . J Clin Microbiol 2:, 183–185.[PubMed]
    [Google Scholar]
  17. Simmonds P., Welch J.. ( 2006;). Frequency and dynamics of recombination within different species of human enteroviruses. . J Virol 80:, 483–493. [CrossRef][PubMed]
    [Google Scholar]
  18. Smura T., Blomqvist S., Paananen A., Vuorinen T., Sobotová Z., Bubovica V., Ivanova O., Hovi T., Roivainen M.. ( 2007;). Enterovirus surveillance reveals proposed new serotypes and provides new insight into enterovirus 5′-untranslated region evolution. . J Gen Virol 88:, 2520–2526. [CrossRef][PubMed]
    [Google Scholar]
  19. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  20. Tapparel C., Junier T., Gerlach D., Van-Belle S., Turin L., Cordey S., Mühlemann K., Regamey N., Aubert J. D.. & other authors ( 2009;). New respiratory enterovirus and recombinant rhinoviruses among circulating picornaviruses. . Emerg Infect Dis 15:, 719–726. [CrossRef][PubMed]
    [Google Scholar]
  21. WHO ( 1997;). Manual for the Virological Investigation of Polio. Geneva:: World Health Organization;.
    [Google Scholar]
  22. Witsø E., Palacios G., Cinek O., Stene L. C., Grinde B., Janowitz D., Lipkin W. I., Rønningen K. S.. ( 2006;). High prevalence of human enterovirus A infections in natural circulation of human enteroviruses. . J Clin Microbiol 44:, 4095–4100. [CrossRef][PubMed]
    [Google Scholar]
  23. Yozwiak N. L., Skewes-Cox P., Gordon A., Saborio S., Kuan G., Balmaseda A., Ganem D., Harris E., DeRisi J. L.. ( 2010;). Human enterovirus 109: a novel interspecies recombinant enterovirus isolated from a case of acute pediatric respiratory illness in Nicaragua. . J Virol 84:, 9047–9058. [CrossRef][PubMed]
    [Google Scholar]
  24. Zell R., Sidigi K., Henke A., Schmidt-Brauns J., Hoey E., Martin S., Stelzner A.. ( 1999;). Functional features of the bovine enterovirus 5′-non-translated region. . J Gen Virol 80:, 2299–2309.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.043216-0
Loading
/content/journal/jgv/10.1099/vir.0.043216-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error