1887

Abstract

The genome of (LoLV; genus , family ) is encapsidated by two carboxy-coterminal coat protein (CP) variants (about 28 and 33 kDa), in equimolar proportions. The CP ORF contains two 5′-proximal AUGs encoding Met 1 and Met 49, respectively promoting translation of the 33 and 28 kDa CP variants. The 33 kDa CP N-terminal domain includes a 42 aa sequence encoding a putative chloroplast transit peptide, leading to protein cleavage and alternative derivation of the approximately 28 kDa CP. Mutational analysis of the two in-frame start codons and of the putative proteolytic-cleavage site showed that the N-terminal sequence is crucial for efficient cell-to-cell movement, functional systemic movement, homologous CP interactions and particle formation, but is not required for virus replication. Blocking production of the 28 kDa CP by internal initiation shows no major outcome, whereas additional mutation to prevent proteolytic cleavage at the chloroplast membrane has a dramatic effect on virus infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.042960-0
2012-08-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/8/1814.html?itemId=/content/journal/jgv/10.1099/vir.0.042960-0&mimeType=html&fmt=ahah

References

  1. Adams M. J., Candresse T., Hammond J., Kreuze J. F., Martelli G. P., Namba S., Pearson M. N., Ryu K. H., Vaira A. M.. ( 2012;). Family Alphaflexiviridae. . In Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, pp. 904–919. Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J... San Diego, CA:: Elsevier Academic Press;.
    [Google Scholar]
  2. Bragg J. N., Jackson A. O.. ( 2004;). The C-terminal region of the Barley stripe mosaic virus γb protein participates in homologous interactions and is required for suppression of RNA silencing. . Mol Plant Pathol 5:, 465–481. [CrossRef][PubMed]
    [Google Scholar]
  3. Bruun-Rasmussen M., Madsen C. T., Johansen E., Albrechtsen M.. ( 2008;). Revised sequence of foxtail mosaic virus reveals a triple gene block structure similar to potato virus X. . Arch Virol 153:, 223–226. [CrossRef][PubMed]
    [Google Scholar]
  4. Callaway A., Giesman-Cookmeyer D., Gillock E. T., Sit T. L., Lommel S. A.. ( 2001;). The multifunctional capsid proteins of plant RNA viruses. . Annu Rev Phytopathol 39:, 419–460. [CrossRef][PubMed]
    [Google Scholar]
  5. Cao M., Ye X., Willie K., Lin J., Zhang X., Redinbaugh M. G., Simon A. E., Morris T. J., Qu F.. ( 2010;). The capsid protein of Turnip crinkle virus overcomes two separate defense barriers to facilitate systemic movement of the virus in Arabidopsis. . J Virol 84:, 7793–7802. [CrossRef][PubMed]
    [Google Scholar]
  6. Deng M., Bragg J. N., Ruzin S., Schichnes D., King D., Goodin M. M., Jackson A. O.. ( 2007;). Role of the sonchus yellow net virus N protein in formation of nuclear viroplasms. . J Virol 81:, 5362–5374. [CrossRef][PubMed]
    [Google Scholar]
  7. Emanuelsson O., Brunak S., von Heijne G., Nielsen H.. ( 2007;). Locating proteins in the cell using TargetP, SignalP and related tools. . Nat Protoc 2:, 953–971. [CrossRef][PubMed]
    [Google Scholar]
  8. Goodin M. M., Dietzgen R. G., Schichnes D., Ruzin S., Jackson A. O.. ( 2002;). pGD vectors: versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. . Plant J 31:, 375–383. [CrossRef][PubMed]
    [Google Scholar]
  9. Hammond R. W., Hammond J.. ( 2010;). Maize rayado fino virus capsid proteins assemble into virus-like particles in Escherichia coli. . Virus Res 147:, 208–215. [CrossRef][PubMed]
    [Google Scholar]
  10. Hammond R. W., Ramirez P.. ( 2001;). Molecular characterization of the genome of Maize rayado fino virus, the type member of the genus Marafivirus. . Virology 282:, 338–347. [CrossRef][PubMed]
    [Google Scholar]
  11. James D., Varga A., Croft H.. ( 2007;). Analysis of the complete genome of peach chlorotic mottle virus: identification of non-AUG start codons, in vitro coat protein expression, and elucidation of serological cross-reactions. . Arch Virol 152:, 2207–2215. [CrossRef][PubMed]
    [Google Scholar]
  12. Johansen L. K., Carrington J. C.. ( 2001;). Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. . Plant Physiol 126:, 930–938. [CrossRef][PubMed]
    [Google Scholar]
  13. Joshi C. P., Zhou H., Huang X. Q., Chiang V. L.. ( 1997;). Context sequences of translation initiation codon in plants. . Plant Mol Biol 35:, 993–1001. [CrossRef][PubMed]
    [Google Scholar]
  14. Koh D. C., Wang X., Wong S. M., Liu D. X.. ( 2006;). Translation initiation at an upstream CUG codon regulates the expression of Hibiscus chlorotic ringspot virus coat protein. . Virus Res 122:, 35–44. [CrossRef][PubMed]
    [Google Scholar]
  15. Lawson R. H., Hearon S. S.. ( 1974;). Ultrastructure of carnation etched ring virus-infected Saponaria vaccaria and Dianthus caryophyllus. . J Ultrastruct Res 48:, 201–215. [CrossRef][PubMed]
    [Google Scholar]
  16. Li R., Maroon-Lango C., Mock R., Hammond J.. ( 2008;). Lolium latent virus. . In Characterization, Diagnosis and Management of Plant Viruses, vol. 4, pp. 215–220. Edited by Rao G. P., Bragard C., Lebas B. S. M... Houston, TX:: Studium Press;.
    [Google Scholar]
  17. Lim H. S., Bragg J. N., Ganesan U., Ruzin S., Schichnes D., Lee M. Y., Vaira A. M., Ryu K. H., Hammond J., Jackson A. O.. ( 2009;). Subcellular localization of the Barley stripe mosaic virus triple gene block proteins. . J Virol 83:, 9432–9448. [CrossRef][PubMed]
    [Google Scholar]
  18. Lim H. S., Vaira A. M., Bae H., Bragg J. N., Ruzin S. E., Bauchan G. R., Dienelt M. M., Owens R. A., Hammond J.. ( 2010;). Mutation of a chloroplast-targeting signal in Alternanthera mosaic virus TGB3 impairs cell-to-cell movement and eliminates long-distance virus movement. . J Gen Virol 91:, 2102–2115. [CrossRef][PubMed]
    [Google Scholar]
  19. Lu Q.. ( 2005;). Seamless cloning and gene fusion. . Trends Biotechnol 23:, 199–207. [CrossRef][PubMed]
    [Google Scholar]
  20. Milne R. G., Luisoni E.. ( 1975;). Rapid high-resolution immune electron microscopy of plant viruses. . Virology 68:, 270–274. [CrossRef][PubMed]
    [Google Scholar]
  21. Milne R. G., Luisoni E.. ( 1977;). Rapid immune electron microscopy of virus preparations. . Methods Virol 6:, 265–281.
    [Google Scholar]
  22. Mise K., Tsuge S., Nagao K., Okuno T., Furusawa I.. ( 1992;). Nucleotide sequence responsible for the synthesis of a truncated coat protein of brome mosaic virus strain ATCC66. . J Gen Virol 73:, 2543–2551. [CrossRef][PubMed]
    [Google Scholar]
  23. Ozeki J., Hashimoto M., Komatsu K., Maejima K., Himeno M., Senshu H., Kawanishi T., Kagiwada S., Yamaji Y., Namba S.. ( 2009;). The N-terminal region of the Plantago asiatica mosaic virus coat protein is required for cell-to-cell movement but is dispensable for virion assembly. . Mol Plant Microbe Interact 22:, 677–685. [CrossRef][PubMed]
    [Google Scholar]
  24. Petty I. T. D., Hunter B. G., Wei N., Jackson A. O.. ( 1989;). Infectious barley stripe mosaic virus RNA transcribed in vitro from full-length genomic cDNA clones. . Virology 171:, 342–349. [CrossRef][PubMed]
    [Google Scholar]
  25. Riechmann J. L., Ito T., Meyerowitz E. M.. ( 1999;). Non-AUG initiation of AGAMOUS mRNA translation in Arabidopsis thaliana. . Mol Cell Biol 19:, 8505–8512.[PubMed]
    [Google Scholar]
  26. Roberts A. G., Cruz S. S., Roberts I. M., Prior D., Turgeon R., Oparka K. J.. ( 1997;). Phloem unloading in sink leaves of Nicotiana benthamiana: comparison of a fluorescent solute with a fluorescent virus. . Plant Cell 9:, 1381–1396. [CrossRef][PubMed]
    [Google Scholar]
  27. Robertson N. L., French R., Morris T. J.. ( 2000;). The open reading frame 5A of foxtail mosaic virus is expressed in vivo and is dispensable for systemic infection. . Arch Virol 145:, 1685–1698. [CrossRef][PubMed]
    [Google Scholar]
  28. Satyanarayana T., Gowda S., Ayllón M. A., Dawson W. O.. ( 2004;). Closterovirus bipolar virion: evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5′ region. . Proc Natl Acad Sci U S A 101:, 799–804. [CrossRef][PubMed]
    [Google Scholar]
  29. Shirako Y.. ( 1998;). Non-AUG translation initiation in a plant RNA virus: a forty-amino-acid extension is added to the N terminus of the soil-borne wheat mosaic virus capsid protein. . J Virol 72:, 1677–1682.[PubMed]
    [Google Scholar]
  30. Solovyev A. G., Novikov V. K., Merits A., Savenkov E. I., Zelenina D. A., Tyulkina L. G., Morozov S. Y.. ( 1994;). Genome characterization and taxonomy of Plantago asiatica mosaic potexvirus. . J Gen Virol 75:, 259–267. [CrossRef][PubMed]
    [Google Scholar]
  31. Tatineni S., Van Winkle D. H., French R.. ( 2011;). The N-terminal region of wheat streak mosaic virus coat protein is a host- and strain-specific long-distance transport factor. . J Virol 85:, 1718–1731. [CrossRef][PubMed]
    [Google Scholar]
  32. Vaira A. M., Maroon-Lango C. J., Hammond J.. ( 2008;). Molecular characterization of Lolium latent virus, proposed type member of a new genus in the family Flexiviridae. . Arch Virol 153:, 1263–1270. [CrossRef][PubMed]
    [Google Scholar]
  33. Vincze T., Posfai J., Roberts R. J.. ( 2003;). NEBcutter: A program to cleave DNA with restriction enzymes. . Nucleic Acids Res 31:, 3688–3691. [CrossRef][PubMed]
    [Google Scholar]
  34. Waadt R., Schmidt L. K., Lohse M., Hashimoto K., Bock R., Kudla J.. ( 2008;). Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. . Plant J 56:, 505–516. [CrossRef][PubMed]
    [Google Scholar]
  35. Wurch T., Lestienne F., Pauwels P. J.. ( 1998;). A modified overlap extention PCR method to create chimeric genes in the absence of restriction enzymes. . Biotechnol Tech 12:, 653–657. [CrossRef]
    [Google Scholar]
  36. Xiang Y., Kakani K., Reade R., Hui E., Rochon D.. ( 2006;). A 38-amino-acid sequence encompassing the arm domain of the Cucumber necrosis virus coat protein functions as a chloroplast transit peptide in infected plants. . J Virol 80:, 7952–7964. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.042960-0
Loading
/content/journal/jgv/10.1099/vir.0.042960-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error