1887

Abstract

Fig mosaic virus (FMV), a negative-strand RNA virus, is recognized as a causal agent of fig mosaic disease. We performed RT-PCR for 14 FMV isolates collected from symptomatic fig plants in Japan and Serbia using primers corresponding to the conserved 13 nt stretches found at the termini of FMV genomic segments. The resulting simultaneous amplification of all FMV genomic segments yielded four previously identified segments of FMV and two novel segments. These novel FMV genomic RNA segments were found in each of the 14 FMV isolates analysed. In Northern blot studies, both the sense and antisense strands of these novel RNA molecules accumulated in FMV-infected fig leaves but not in uninfected fig leaves, confirming that they replicate as FMV genomic segments. Sequence analysis showed that the novel RNA segments are similar, in their structural organization and molecular evolutionary patterns, to those of known FMV genomic RNA segments. Our findings thus indicate that these newly discovered RNA segments are previously unidentified FMV genomic segments, which we have designated RNA5 and RNA6.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.042663-0
2012-07-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/7/1612.html?itemId=/content/journal/jgv/10.1099/vir.0.042663-0&mimeType=html&fmt=ahah

References

  1. Anonymous ( 2008; ). Food and Agriculture Organization of United Nations, Statical Data FAOSTAT. . Available at: http://faostat.fao.org.
  2. Aquino V. H. , Moreli M. L. , Moraes Figueiredo L. T. . ( 2003; ). Analysis of oropouche virus L protein amino acid sequence showed the presence of an additional conserved region that could harbour an important role for the polymerase activity. . Arch Virol 148:, 19–28. [CrossRef] [PubMed]
    [Google Scholar]
  3. Barr J. N. , Wertz G. W. . ( 2005; ). Role of the conserved nucleotide mismatch within 3′- and 5′-terminal regions of Bunyamwera virus in signaling transcription. . J Virol 79:, 3586–3594. [CrossRef] [PubMed]
    [Google Scholar]
  4. Barr J. N. , Elliott R. M. , Dunn E. F. , Wertz G. W. . ( 2003; ). Segment-specific terminal sequences of Bunyamwera bunyavirus regulate genome replication. . Virology 311:, 326–338. [CrossRef] [PubMed]
    [Google Scholar]
  5. Benthack W. , Mielke N. , Büttner C. , Mühlbach H.-P. . ( 2005; ). Double-stranded RNA pattern and partial sequence data indicate plant virus infection associated with the ringspot disease of European mountain ash (Sorbus aucuparia L.). . Arch Virol 150:, 37–52. [CrossRef] [PubMed]
    [Google Scholar]
  6. Çağlayan K. , Serçe Ç. U. , Barutcu E. , Kaya K. , Medina V. , Gazel M. , Soylu S. , Çalışkan O. . ( 2010; ). Comparison by sequence-based and electron microscopic analysis of fig mosaic virus isolates obtained from field and experimentally inoculated fig plant. . Plant Dis 94:, 1448–1452. [CrossRef]
    [Google Scholar]
  7. Carroll S. A. , Bird B. H. , Rollin P. E. , Nichol S. T. . ( 2010; ). Ancient common ancestry of Crimean-Congo hemorrhagic fever virus. . Mol Phylogenet Evol 55:, 1103–1110. [CrossRef] [PubMed]
    [Google Scholar]
  8. Condit I. J. , Horne W. T. . ( 1933; ). A mosaic of the fig in California. . Phytopathology 23:, 887–896.
    [Google Scholar]
  9. Elbeaino T. , Digiaro M. , Alabdullah A. , De Stradis A. , Minafra A. , Mielke N. , Castellano M. A. , Martelli G. P. . ( 2009a; ). A multipartite single-stranded negative-sense RNA virus is the putative agent of fig mosaic disease. . J Gen Virol 90:, 1281–1288. [CrossRef] [PubMed]
    [Google Scholar]
  10. Elbeaino T. , Digiaro M. , Martelli G. P. . ( 2009b; ). Complete nucleotide sequence of four RNA segments of fig mosaic virus. . Arch Virol 154:, 1719–1727. [CrossRef] [PubMed]
    [Google Scholar]
  11. Finn R. D. , Mistry J. , Tate J. , Coggill P. , Heger A. , Pollington J. E. , Gavin O. L. , Gunasekaran P. , Ceric G. . & other authors ( 2010; ). The Pfam protein families database. . Nucleic Acids Res 38: (Database issue), D211–D222. [CrossRef] [PubMed]
    [Google Scholar]
  12. Flock R. A. , Wallace J. M. . ( 1955; ). Transmission of fig mosaic by the eriophyid mite Aceria ficus . . Phytopathology 45:, 52–54.
    [Google Scholar]
  13. Gultyaev A. P. , Fouchier R. A. M. , Olsthoorn R. C. L. . ( 2010; ). Influenza virus RNA structure: unique and common features. . Int Rev Immunol 29:, 533–556. [CrossRef] [PubMed]
    [Google Scholar]
  14. Ishikawa K. , Maejima K. , Takinami Y. , Komatsu K. , Hashimoto M. , Yamaji Y. , Namba S. . ( 2012; ). First report of fig mosaic virus infecting common fig (Ficus carica) in Japan. . J Gen Plant Pathol 78:, 136–-139.[CrossRef]
    [Google Scholar]
  15. King A. M. Q. , Adams M. J. , Carstens E. B. , Lefkowitz E. J. . ( 2011; ). Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, pp. 771–776. London:: Elsevier Academic Press;.
    [Google Scholar]
  16. Kohl A. , Dunn E. F. , Lowen A. C. , Elliott R. M. . ( 2004; ). Complementarity, sequence and structural elements within the 3′ and 5′ non-coding regions of the Bunyamwera orthobunyavirus S segment determine promoter strength. . J Gen Virol 85:, 3269–3278. [CrossRef] [PubMed]
    [Google Scholar]
  17. Komuro Y. . ( 1962; ). Viruses infecting fruit trees. . Plant Protection 16:, 255–257. (in Japanese).
    [Google Scholar]
  18. Kumar P. L. , Jones A. T. , Reddy D. V. R. . ( 2003; ). A novel mite-transmitted virus with a divided RNA genome closely associated with pigeonpea sterility mosaic disease. . Phytopathology 93:, 71–81. [CrossRef] [PubMed]
    [Google Scholar]
  19. Laney A. G. , Keller K. E. , Martin R. R. , Tzanetakis I. E. . ( 2011; ). A discovery 70 years in the making: characterization of the Rose rosette virus. . J Gen Virol 92:, 1727–1732. [CrossRef] [PubMed]
    [Google Scholar]
  20. McGavin W. J. , Mitchell C. , Cock P. J. A. , Wright K. M. , MacFarlane S. A. . ( 2012; ). Raspberry leaf blotch virus, a putative new member of the genus Emaravirus, encodes a novel genomic RNA. . J Gen Virol 93:, 430–437. [CrossRef] [PubMed]
    [Google Scholar]
  21. Mielke N. , Müehlbach H.-P. . ( 2007; ). A novel, multipartite, negative-strand RNA virus is associated with the ringspot disease of European mountain ash (Sorbus aucuparia L.). . J Gen Virol 88:, 1337–1346. [CrossRef] [PubMed]
    [Google Scholar]
  22. Müller R. , Poch O. , Delarue M. , Bishop D. H. L. , Bouloy M. . ( 1994; ). Rift Valley fever virus L segment: correction of the sequence and possible functional role of newly identified regions conserved in RNA-dependent polymerases. . J Gen Virol 75:, 1345–1352. [CrossRef] [PubMed]
    [Google Scholar]
  23. Nguyen M. , Haenni A. L. . ( 2003; ). Expression strategies of ambisense viruses. . Virus Res 93:, 141–150. [CrossRef] [PubMed]
    [Google Scholar]
  24. Senshu H. , Ozeki J. , Komatsu K. , Hashimoto M. , Hatada K. , Aoyama M. , Kagiwada S. , Yamaji Y. , Namba S. . ( 2009; ). Variability in the level of RNA silencing suppression caused by triple gene block protein 1 (TGBp1) from various potexviruses during infection. . J Gen Virol 90:, 1014–1024. [CrossRef] [PubMed]
    [Google Scholar]
  25. Simon A. E. , Roossinck M. J. , Havelda Z. . ( 2004; ). Plant virus satellite and defective interfering RNAs: new paradigms for a new century. . Annu Rev Phytopathol 42:, 415–437. [CrossRef] [PubMed]
    [Google Scholar]
  26. Skare J. M. , Wijkamp I. , Denham I. , Rezende J. A. , Kitajima E. W. , Park J. W. , Desvoyes B. , Rush C. M. , Michels G. . & other authors ( 2006; ). A new eriophyid mite-borne membrane-enveloped virus-like complex isolated from plants. . Virology 347:, 343–353. [CrossRef] [PubMed]
    [Google Scholar]
  27. Takahashi K. , Nei M. . ( 2000; ). Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. . Mol Biol Evol 17:, 1251–1258. [CrossRef] [PubMed]
    [Google Scholar]
  28. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  29. Tentchev D. , Verdin E. , Marchal C. , Jacquet M. , Aguilar J. M. , Moury B. . ( 2011; ). Evolution and structure of tomato spotted wilt virus populations: evidence of extensive reassortment and insights into emergence processes. . J Gen Virol 92:, 961–973. [CrossRef] [PubMed]
    [Google Scholar]
  30. Thompson J. D. , Higgins D. G. , Gibson T. J. . ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  31. Walia J. J. , Salem N. M. , Falk B. W. . ( 2009; ). Partial sequence and survey analysis identify a multipartite, negative-sense RNA virus associated with fig mosaic. . Plant Dis 93:, 4–10. [CrossRef]
    [Google Scholar]
  32. Walpita P. , Flick R. . ( 2005; ). Reverse genetics of negative-stranded RNA viruses: a global perspective. . FEMS Microbiol Lett 244:, 9–18. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.042663-0
Loading
/content/journal/jgv/10.1099/vir.0.042663-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error