1887

Abstract

The genetic diversity present in populations of RNA viruses is likely to be strongly modulated by aspects of their life history, including mode of transmission. However, how transmission mode shapes patterns of intra- and inter-host genetic diversity, particularly when acting in combination with mutation, population bottlenecks and the selection of advantageous mutations, is poorly understood. To address these issues, this study performed ultradeep sequencing of zucchini yellow mosaic virus in a wild gourd, ssp. , under two infection conditions: aphid vectored and mechanically inoculated, achieving a mean coverage of approximately 10 000×. It was shown that mutations persisted during inter-host transmission events in both the aphid vectored and mechanically inoculated populations, suggesting that the vector-imposed transmission bottleneck is not as extreme as previously supposed. Similarly, mutations were found to persist within individual hosts, arguing against strong systemic bottlenecks. Strikingly, mutations were seen to go to fixation in the aphid-vectored plants, suggestive of a major fitness advantage, but remained at low frequency in the mechanically inoculated plants. Overall, this study highlights the utility of ultradeep sequencing in providing high-resolution data capable of revealing the nature of virus evolution, particularly as the full spectrum of genetic diversity within a population may not be uncovered without sequence coverage of at least 2500-fold.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.042622-0
2012-08-01
2020-07-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/8/1831.html?itemId=/content/journal/jgv/10.1099/vir.0.042622-0&mimeType=html&fmt=ahah

References

  1. Acosta-Leal R., Bryan B. K., Rush C. M.. 2010; Host effect on the genetic diversification of Beet necrotic yellow vein virus single-plant populations. Phytopathology100:1204–1212 [CrossRef][PubMed]
    [Google Scholar]
  2. Acosta-Leal R., Duffy S., Xiong Z., Hammond R. W., Elena S. F.. 2011; Advances in plant virus evolution: translating evolutionary insights into better disease management. Phytopathology101:1136–1148 [CrossRef][PubMed]
    [Google Scholar]
  3. Ajayi O., Dewar A. M.. 1983; The effect of barley yellow dwarf virus on field populations of the cereal aphids, Sitobion avenae and Metopolophium dirhodum . Ann Appl Biol103:1–11 [CrossRef]
    [Google Scholar]
  4. Ali A., Li H., Schneider W. L., Sherman D. J., Gray S., Smith D., Roossinck M. J.. 2006; Analysis of genetic bottlenecks during horizontal transmission of Cucumber mosaic virus . J Virol80:8345–8350 [CrossRef][PubMed]
    [Google Scholar]
  5. Atreya C. D., Raccah B., Pirone T. P.. 1990; A point mutation in the coat protein abolishes aphid transmissibility of a potyvirus. Virology178:161–165 [CrossRef][PubMed]
    [Google Scholar]
  6. Basky Z., Perring T., Tobias I.. 2001; Spread of zucchini yellow mosaic potyvirus in squash in Hungary. J Appl Entomol125:271–275 [CrossRef]
    [Google Scholar]
  7. Betancourt M., Fereres A., Fraile A., García-Arenal F.. 2008; Estimation of the effective number of founders that initiate an infection after aphid transmission of a multipartite plant virus. J Virol82:12416–12421 [CrossRef][PubMed]
    [Google Scholar]
  8. Blankenberg D., Von Kuster G., Coraor N., Ananda G., Lazarus R., Mangan M., Nekrutenko A., Taylor J.. 2010; Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol BiolUnit 19.10:1–21 [CrossRef]
    [Google Scholar]
  9. Blua M., Perring T.. 1989; Effect of zucchini yellow mosaic virus on development and yield of cantaloupe (Cucumis melo). Plant Dis73:317–320 [CrossRef]
    [Google Scholar]
  10. Chung B. Y., Miller W. A., Atkins J. F., Firth A. E.. 2008; An overlapping essential gene in the Potyviridae . Proc Natl Acad Sci U S A105:5897–5902 [CrossRef][PubMed]
    [Google Scholar]
  11. Desbiez C., Lecoq H.. 1997; Zucchini yellow mosaic virus. Plant Pathol46:809–829 [CrossRef]
    [Google Scholar]
  12. Duffy S., Shackelton L. A., Holmes E. C.. 2008; Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet9:267–276 [CrossRef][PubMed]
    [Google Scholar]
  13. Espinoza A. M., Medina V., Hull R., Markham P. G.. 1991; Cauliflower mosaic virus gene II product forms distinct inclusion bodies in infected plant cells. Virology185:337–344 [CrossRef][PubMed]
    [Google Scholar]
  14. Feuer R., Boone J. D., Netski D., Morzunov S. P., St Jeor S. C.. 1999; Temporal and spatial analysis of Sin Nombre virus quasispecies in naturally infected rodents. J Virol73:9544–9554[PubMed]
    [Google Scholar]
  15. French R., Stenger D. C.. 2003; Evolution of wheat streak mosaic virus: dynamics of population growth within plants may explain limited variation. Annu Rev Phytopathol41:199–214 [CrossRef][PubMed]
    [Google Scholar]
  16. Gal-On A.. 2007; Zucchini yellow mosaic virus: insect transmission and pathogenicity – the tails of two proteins. Mol Plant Pathol8:139–150 [CrossRef][PubMed]
    [Google Scholar]
  17. García-Arenal F., Fraile A., Malpica J. M.. 2001; Variability and genetic structure of plant virus populations. Annu Rev Phytopathol39:157–186[PubMed][CrossRef]
    [Google Scholar]
  18. García-Arenal F., Fraile A., Malpica J. M.. 2003; Variation and evolution of plant virus populations. Int Microbiol6:225–232 [CrossRef][PubMed]
    [Google Scholar]
  19. Goecks J., Nekrutenko A., Taylor J., Galaxy Team T.. Galaxy Team 2010; Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol11:R86 [CrossRef][PubMed]
    [Google Scholar]
  20. González-Jara P., Fraile A., Canto T., García-Arenal F.. 2009; The multiplicity of infection of a plant virus varies during colonization of its eukaryotic host. J Virol83:7487–7494 [CrossRef][PubMed]
    [Google Scholar]
  21. Goto H., Dickins B., Afgan E., Paul I. M., Taylor J., Makova K. D., Nekrutenko A.. 2011; Dynamics of mitochondrial heteroplasmy in three families investigated via a repeatable re-sequencing study. Genome Biol12:R59 [CrossRef][PubMed]
    [Google Scholar]
  22. Hooks C. R. R., Valenzuela H. R., Defrank J.. 1998; Incidence of pests and arthropod natural enemies in zucchini grown with living mulches. Agric Ecosyst Environ69:217–231 [CrossRef]
    [Google Scholar]
  23. Huet H., Gal-On A., Meir E., Lecoq H., Raccah B.. 1994; Mutations in the helper component protease gene of zucchini yellow mosaic virus affect its ability to mediate aphid transmissibility. J Gen Virol75:1407–1414 [CrossRef][PubMed]
    [Google Scholar]
  24. Hughes A. L.. 2009; Small effective population sizes and rare nonsynonymous variants in potyviruses. Virology393:127–134 [CrossRef][PubMed]
    [Google Scholar]
  25. Jamous R. M., Boonrod K., Fuellgrabe M. W., Ali-Shtayeh M. S., Krczal G., Wassenegger M.. 2011; The helper component-proteinase of the Zucchini yellow mosaic virus inhibits the Hua Enhancer 1 methyltransferase activity in vitro . J Gen Virol92:2222–2226 [CrossRef][PubMed]
    [Google Scholar]
  26. Jerzak G. V. S., Brown I., Shi P.-Y., Kramer L. D., Ebel G. D.. 2008; Genetic diversity and purifying selection in West Nile virus populations are maintained during host switching. Virology374:256–260 [CrossRef][PubMed]
    [Google Scholar]
  27. Katis N. I., Tsitsipis J. A., Lykouressis D. P., Papapanayotou A., Margaritopoulos J. T., Kokinis G. M., Perdikis D. C., Manoussopoulos I. N.. 2006; Transmission of Zucchini yellow mosaic virus by colonizing and non-colonizing aphids in Greece and new aphid vectors of the virus. J Phytopathol154:293–302 [CrossRef]
    [Google Scholar]
  28. Khelifa M., Journou S., Krishnan K., Gargani D., Espérandieu P., Blanc S., Drucker M.. 2007; Electron-lucent inclusion bodies are structures specialized for aphid transmission of cauliflower mosaic virus. J Gen Virol88:2872–2880 [CrossRef][PubMed]
    [Google Scholar]
  29. Lech W. J., Wang G., Yang Y. L., Chee Y., Dorman K., McCrae D., Lazzeroni L. C., Erickson J. W., Sinsheimer J. S., Kaplan A. H.. 1996; In vivo sequence diversity of the protease of human immunodeficiency virus type 1: presence of protease inhibitor-resistant variants in untreated subjects. J Virol70:2038–2043[PubMed]
    [Google Scholar]
  30. Li H., Durbin R.. 2009; Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics25:1754–1760 [CrossRef][PubMed]
    [Google Scholar]
  31. Lisa V., Boccardo G., D’Agostino G., Dellavalle G., D’Aquilio M.. 1981; Characterization of a potyvirus that causes zucchini yellow mosaic. Phytopathology71:667–672 [CrossRef]
    [Google Scholar]
  32. Mauck K. E., De Moraes C. M., Mescher M. C.. 2010; Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc Natl Acad Sci U S A107:3600–3605 [CrossRef][PubMed]
    [Google Scholar]
  33. McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S.. other authors 2010; The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res20:1297–1303 [CrossRef][PubMed]
    [Google Scholar]
  34. Medina-Ortega K. J., Bosque-Pérez N. A., Ngumbi E., Jiménez-Martínez E. S., Eigenbrode S. D.. 2009; Rhopalosiphum padi (Hemiptera: Aphididae) responses to volatile cues from barley yellow dwarf virus-infected wheat. Environ Entomol38:836–845 [CrossRef][PubMed]
    [Google Scholar]
  35. Minoche A. E., Dohm J. C., Himmelbauer H.. 2011; Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems. Genome Biol12:R112 [CrossRef][PubMed]
    [Google Scholar]
  36. Miyashita S., Kishino H.. 2010; Estimation of the size of genetic bottlenecks in cell-to-cell movement of Soil-borne wheat mosaic virus and the possible role of the bottlenecks in speeding up selection of variations in trans-acting genes or elements. J Virol84:1828–1837 [CrossRef][PubMed]
    [Google Scholar]
  37. Mortazavi A., Williams B. A., McCue K., Schaeffer L., Wold B.. 2008; Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods5:621–628 [CrossRef][PubMed]
    [Google Scholar]
  38. Moury B., Fabre F., Senoussi R.. 2007; Estimation of the number of virus particles transmitted by an insect vector. Proc Natl Acad Sci U S A104:17891–17896 [CrossRef][PubMed]
    [Google Scholar]
  39. Nakamura K., Oshima T., Morimoto T., Ikeda S., Yoshikawa H., Shiwa Y., Ishikawa S., Linak M. C., Hirai A.. other authors 2011; Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res39:e90 [CrossRef][PubMed]
    [Google Scholar]
  40. Ngumbi E., Eigenbrode S. D., Bosque-Pérez N. A., Ding H., Rodriguez A.. 2007; Myzus persicae is arrested more by blends than by individual compounds elevated in headspace of PLRV-infected potato. J Chem Ecol33:1733–1747 [CrossRef][PubMed]
    [Google Scholar]
  41. Pfosser M. F., Baumann H.. 2002; Phylogeny and geographical differentiation of zucchini yellow mosaic virus isolates (Potyviridae) based on molecular analysis of the coat protein and part of the cytoplasmic inclusion protein genes. Arch Virol147:1599–1609 [CrossRef][PubMed]
    [Google Scholar]
  42. Pirone T. P., Blanc S.. 1996; Helper-dependent vector transmission of plant viruses. Annu Rev Phytopathol34:227–247 [CrossRef][PubMed]
    [Google Scholar]
  43. Pirone T. P., Perry K. L.. 2002; Aphids: non-persistent transmission. Adv Bot Res36:1–19 [CrossRef]
    [Google Scholar]
  44. R Development Core Team 2011; R: a language and environment for statistical computing. http://www.R-project.org R Foundation for Statistical Computing, Vienna, Austria
  45. Roossinck M. J.. 1997; Mechanisms of plant virus evolution. Annu Rev Phytopathol35:191–209 [CrossRef][PubMed]
    [Google Scholar]
  46. Sacristán S., Malpica J. M., Fraile A., García-Arenal F.. 2003; Estimation of population bottlenecks during systemic movement of tobacco mosaic virus in tobacco plants. J Virol77:9906–9911 [CrossRef][PubMed]
    [Google Scholar]
  47. Sanjuán R., Moya A., Elena S. F.. 2004; The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proc Natl Acad Sci U S A101:8396–8401 [CrossRef][PubMed]
    [Google Scholar]
  48. Simmons H. E., Holmes E. C., Stephenson A. G.. 2008; Rapid evolutionary dynamics of zucchini yellow mosaic virus. J Gen Virol89:1081–1085 [CrossRef][PubMed]
    [Google Scholar]
  49. Simmons H. E., Holmes E. C., Gildow F. E., Bothe-Goralczyk M. A., Stephenson A. G.. 2011a; Experimental verification of seed transmission in Zucchini yellow mosaic virus . Plant Dis95:751–754 [CrossRef]
    [Google Scholar]
  50. Simmons H. E., Holmes E. C., Stephenson A. G.. 2011b; Rapid turnover of intra-host genetic diversity in Zucchini yellow mosaic virus. Virus Res155:389–396 [CrossRef][PubMed]
    [Google Scholar]
  51. Urcuqui-Inchima S., Haenni A. L., Bernardi F.. 2001; Potyvirus proteins: a wealth of functions. Virus Res74:157–175 [CrossRef][PubMed]
    [Google Scholar]
  52. Zerbino D. R., Birney E.. 2008; Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res18:821–829 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.042622-0
Loading
/content/journal/jgv/10.1099/vir.0.042622-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error