Seamless replacement of multiple nucleopolyhedrovirus with each of five novel type II alphabaculovirus fusion sequences generates pseudotyped virus that fails to transduce mammalian cells Free

Abstract

multiple nucleopolyhedrovirus (AcMNPV), a member of the type I alphabaculoviruses, is able to transduce and deliver a functional gene to a range of non-host cells, including many mammalian lines and primary cells, a property mediated by the envelope fusion protein GP64. AcMNPV is non-cytopathic and inherently replication deficient in non-host cells. As such, AcMNPV represents a possible new class of gene therapy vector with potential future clinical utility. Whilst not a problem for gene delivery, the broad tropism displayed for non-host cells is less desirable in a gene therapy vector. The fusion protein F of type II alphabaculoviruses can substitute functionally for GP64, and such pseudotyped viruses display a severely impaired capacity for non-host-cell transduction. Thus, surface decoration of such an F-pseudotyped AcMNPV with cell-binding ligands may restore transduction competence and generate vectors with desirable cell-targeting characteristics. By seamlessly swapping the native coding sequence with each of five sequences encoding different F proteins, a set of F-pseudotyped AcMNPV was generated. This report details their relative abilities both to functionally replace GP64 in viral growth and to transduce human Saos-2 and HeLa cells. All five supported viable infections in insect cell cultures and one, the NPV (MacoNPV) F pseudotype, could be amplified to titres close to those of native AcMNPV. In contrast, none was able to transduce the Saos-2 and HeLa cell lines. The robust support provided by MacoNPV F in virus production makes the corresponding pseudotype a viable scaffold to display surface ligands to direct selective mammalian cell targeting.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.041921-0
2012-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/7/1583.html?itemId=/content/journal/jgv/10.1099/vir.0.041921-0&mimeType=html&fmt=ahah

References

  1. Blissard G. W., Wenz J. R. 1992; Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J Virol 66:6829–6835[PubMed]
    [Google Scholar]
  2. Boyce F. M., Bucher N. L. R. 1996; Baculovirus-mediated gene transfer into mammalian cells. Proc Natl Acad Sci U S A 93:2348–2352 [View Article][PubMed]
    [Google Scholar]
  3. Chen C.-Y., Lin C.-Y., Chen G.-Y., Hu Y.-C. 2011; Baculovirus as a gene delivery vector: recent understandings of molecular alterations in transduced cells and latest applications. Biotechnol Adv 29:618–631 [View Article][PubMed]
    [Google Scholar]
  4. Dolphin C. T., Hope I. A. 2006; Caenorhabditis elegans reporter fusion genes generated by seamless modification of large genomic DNA clones. Nucleic Acids Res 34:e72 [View Article][PubMed]
    [Google Scholar]
  5. Dong S., Wang M., Qiu Z., Deng F., Vlak J. M., Hu Z., Wang H. 2010; Autographa californica multicapsid nucleopolyhedrovirus efficiently infects Sf9 cells and transduces mammalian cells via direct fusion with the plasma membrane at low pH. J Virol 84:5351–5359 [View Article][PubMed]
    [Google Scholar]
  6. Duisit G., Saleun S., Douthe S., Barsoum J., Chadeuf G., Moullier P. 1999; Baculovirus vector requires electrostatic interactions including heparan sulfate for efficient gene transfer in mammalian cells. J Gene Med 1:93–102 [View Article][PubMed]
    [Google Scholar]
  7. Gao R., McCormick C. J., Arthur M. J. P., Ruddell R., Oakley F., Smart D. E., Murphy F. R., Harris M. P. G., Mann D. A. 2002; High efficiency gene transfer into cultured primary rat and human hepatic stellate cells using baculovirus vectors. Liver 22:15–22 [View Article][PubMed]
    [Google Scholar]
  8. Ghosh S., Parvez M. K., Banerjee K., Sarin S. K., Hasnain S. E. 2002; Baculovirus as mammalian cell expression vector for gene therapy: an emerging strategy. Mol Ther 6:5–11 [View Article][PubMed]
    [Google Scholar]
  9. Harrison R. L., Puttler B., Popham H. J. R. 2008; Genomic sequence analysis of a fast-killing isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus. J Gen Virol 89:775–790 [View Article][PubMed]
    [Google Scholar]
  10. Hefferon K. L., Oomens A. G. P., Monsma S. A., Finnerty C. M., Blissard G. W. 1999; Host cell receptor binding by baculovirus GP64 and kinetics of virion entry. Virology 258:455–468 [View Article][PubMed]
    [Google Scholar]
  11. Hofmann C., Sandig V., Jennings G., Rudolph M., Schlag P., Strauss M. 1995; Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci U S A 92:10099–10103 [View Article][PubMed]
    [Google Scholar]
  12. Hüser A., Hofmann C. 2003; Baculovirus vectors: novel mammalian cell gene-delivery vehicles and their applications. Am J Pharmacogenomics 3:53–63[PubMed] [CrossRef]
    [Google Scholar]
  13. Jakubowska A. K., Peters S. A., Ziemnicka J., Vlak J. M., van Oers M. M. 2006; Genome sequence of an enhancin gene-rich nucleopolyhedrovirus (NPV) from Agrotis segetum: collinearity with Spodoptera exigua multiple NPV. J Gen Virol 87:537–551 [View Article][PubMed]
    [Google Scholar]
  14. Jehle J. A., Blissard G. W., Bonning B. C., Cory J. S., Herniou E. A., Rohrmann G. F., Theilmann D. A., Thiem S. M., Vlak J. M. 2006; On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol 151:1257–1266 [View Article][PubMed]
    [Google Scholar]
  15. Kingsley D. H., Behbahani A., Rashtian A., Blissard G. W., Zimmerberg J. 1999; A discrete stage of baculovirus GP64-mediated membrane fusion. Mol Biol Cell 10:4191–4200[PubMed] [CrossRef]
    [Google Scholar]
  16. Kost T. A., Condreay J. P., Ames R. S. 2010; Baculovirus gene delivery: a flexible assay development tool. Curr Gene Ther 10:168–173 [View Article][PubMed]
    [Google Scholar]
  17. Laakkonen J. P., Mäkelä A. R., Kakkonen E., Turkki P., Kukkonen S., Peränen J., Ylä-Herttuala S., Airenne K. J., Oker-Blom C. other authors 2009; Clathrin-independent entry of baculovirus triggers uptake of E. coli in non-phagocytic human cells. PLoS ONE 4:e5093 [View Article][PubMed]
    [Google Scholar]
  18. Lesch H. P., Makkonen K.-E., Laitinen A., Määttä A.-M., Närvänen O., Airenne K. J., Ylä-Herttuala S. 2011; Requirements for baculoviruses for clinical gene therapy applications. J Invertebr Pathol 107:Suppl.S106–S112 [View Article][PubMed]
    [Google Scholar]
  19. Li Q., Donly C., Li L., Willis L. G., Theilmann D. A., Erlandson M. 2002; Sequence and organization of the Mamestra configurata nucleopolyhedrovirus genome. Virology 294:106–121 [View Article][PubMed]
    [Google Scholar]
  20. Liang C., Song J., Chen X. 2005; The GP64 protein of Autographa californica multiple nucleopolyhedrovirus rescues Helicoverpa armigera nucleopolyhedrovirus transduction in mammalian cells. J Gen Virol 86:1629–1635 [View Article][PubMed]
    [Google Scholar]
  21. Lin C.-Y., Lu C.-H., Luo W.-Y., Chang Y.-H., Sung L.-Y., Chiu H.-Y., Hu Y.-C. 2010; Baculovirus as a gene delivery vector for cartilage and bone tissue engineering. Curr Gene Ther 10:242–254 [View Article][PubMed]
    [Google Scholar]
  22. Long G., Westenberg M., Wang H. L., Vlak J. M., Hu Z. 2006a; Function, oligomerization and N-linked glycosylation of the Helicoverpa armigera single nucleopolyhedrovirus envelope fusion protein. J Gen Virol 87:839–846 [View Article][PubMed]
    [Google Scholar]
  23. Long G., Pan X., Kormelink R., Vlak J. M. 2006b; Functional entry of baculovirus into insect and mammalian cells is dependent on clathrin-mediated endocytosis. J Virol 80:8830–8833 [View Article][PubMed]
    [Google Scholar]
  24. Luckow V. A., Lee S. C., Barry G. F., Olins P. O. 1993; Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli . J Virol 67:4566–4579[PubMed]
    [Google Scholar]
  25. Lung O., Westenberg M., Vlak J. M., Zuidema D., Blissard G. W. 2002; Pseudotyping Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV): F proteins from group II NPVs are functionally analogous to AcMNPV GP64. J Virol 76:5729–5736 [View Article][PubMed]
    [Google Scholar]
  26. Ma L., Tamarina N., Wang Y., Kuznetsov A., Patel N., Kending C., Hering B. J., Philipson L. H. 2000; Baculovirus-mediated gene transfer into pancreatic islet cells. Diabetes 49:1986–1991 [View Article][PubMed]
    [Google Scholar]
  27. Matilainen H., Rinne J., Gilbert L., Marjomäki V., Reunanen H., Oker-Blom C. 2005; Baculovirus entry into human hepatoma cells. J Virol 79:15452–15459 [View Article][PubMed]
    [Google Scholar]
  28. Monsma S. A., Oomens A. G. P., Blissard G. W. 1996; The GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. J Virol 70:4607–4616[PubMed]
    [Google Scholar]
  29. Nicholson L. J., Philippe M., Paine A. J., Mann D. A., Dolphin C. T. 2005; RNA interference mediated in human primary cells via recombinant baculoviral vectors. Mol Ther 11:638–644 [View Article][PubMed]
    [Google Scholar]
  30. O’Reilly D. R., Miller L. K., Luckow V. A. 1992 Baculovirus Expression Vectors, a Laboratory Manual New York, NY: W. H. Freeman and Co;
    [Google Scholar]
  31. Ong S. T., Li F., Du J., Tan Y. W., Wang S. 2005; Hybrid cytomegalovirus enhancer-h1 promoter-based plasmid and baculovirus vectors mediate effective RNA interference. Hum Gene Ther 16:1404–1412 [View Article][PubMed]
    [Google Scholar]
  32. Oomens A. G. P., Blissard G. W. 1999; Requirement for GP64 to drive efficient budding of Autographa californica multicapsid nucleopolyhedrovirus. Virology 254:297–314 [View Article][PubMed]
    [Google Scholar]
  33. Oomens A. G. P., Wertz G. W. 2004; The baculovirus GP64 protein mediates highly stable infectivity of a human respiratory syncytial virus lacking its homologous transmembrane glycoproteins. J Virol 78:124–135 [View Article][PubMed]
    [Google Scholar]
  34. Pang Y., Yu J., Wang L., Hu X., Bao W., Li G., Chen C., Han H., Hu S., Yang H. 2001; Sequence analysis of the Spodoptera litura multicapsid nucleopolyhedrovirus genome. Virology 287:391–404 [View Article][PubMed]
    [Google Scholar]
  35. Pearson M. N., Rohrmann G. F. 2002; Transfer, incorporation, and substitution of envelope fusion proteins among members of the Baculoviridae, Orthomyxoviridae, and Metaviridae (insect retrovirus) families. J Virol 76:5301–5304 [View Article][PubMed]
    [Google Scholar]
  36. Sarkis C., Serguera C., Petres S., Buchet D., Ridet J. L., Edelman L., Mallet J. 2000; Efficient transduction of neural cells in vitro and in vivo by a baculovirus-derived vector. Proc Natl Acad Sci U S A 97:14638–14643 [View Article][PubMed]
    [Google Scholar]
  37. Schauber C. A., Tuerk M. J., Pacheco C. D., Escarpe P. A., Veres G. 2004; Lentiviral vectors pseudotyped with baculovirus gp64 efficiently transduce mouse cells in vivo and show tropism restriction against hematopoietic cell types in vitro . Gene Ther 11:266–275 [View Article][PubMed]
    [Google Scholar]
  38. Stavropoulos T. A., Strathdee C. A. 2001; Synergy between tetA and rpsL provides high-stringency positive and negative selection in bacterial artificial chromosome vectors. Genomics 72:99–104 [View Article][PubMed]
    [Google Scholar]
  39. Szewczyk B., Hoyos-Carvajal L., Paluszek M., Skrzecz I., Lobo de Souza M. 2006; Baculoviruses – re-emerging biopesticides. Biotechnol Adv 24:143–160 [View Article][PubMed]
    [Google Scholar]
  40. Tani H., Nishijima M., Ushijima H., Miyamura T., Matsuura Y. 2001; Characterization of cell-surface determinants important for baculovirus infection. Virology 279:343–353 [View Article][PubMed]
    [Google Scholar]
  41. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  42. van Oers M. M. 2011; Opportunities and challenges for the baculovirus expression system. J Invertebr Pathol 107:Suppl.S3–S15 [View Article][PubMed]
    [Google Scholar]
  43. van Oers M. M., Abma-Henkens M. H. C., Herniou E. A., de Groot J. C. W., Peters S., Vlak J. M. 2005; Genome sequence of Chrysodeixis chalcites nucleopolyhedrovirus, a baculovirus with two DNA photolyase genes. J Gen Virol 86:2069–2080 [View Article][PubMed]
    [Google Scholar]
  44. Wang S., Balasundaram G. 2010; Potential cancer gene therapy by baculoviral transduction. Curr Gene Ther 10:214–225 [View Article][PubMed]
    [Google Scholar]
  45. Westenberg M., Uijtdewilligen P., Vlak J. M. 2007; Baculovirus envelope fusion proteins F and GP64 exploit distinct receptors to gain entry into cultured insect cells. J Gen Virol 88:3302–3306 [View Article][PubMed]
    [Google Scholar]
  46. Westenberg M., Soedling H. M., Mann D. A., Nicholson L. J., Dolphin C. T. 2010; Counter-selection recombineering of the baculovirus genome: a strategy for seamless modification of repeat-containing BACs. Nucleic Acids Res 38:e166 [View Article][PubMed]
    [Google Scholar]
  47. Whitt M. A., Manning J. S. 1988; A phosphorylated 34-kDa protein and a subpopulation of polyhedrin are thiol linked to the carbohydrate layer surrounding a baculovirus occlusion body. Virology 163:33–42 [View Article][PubMed]
    [Google Scholar]
  48. Yin F., Wang M., Tan Y., Deng F., Vlak J. M., Hu Z., Wang H. 2008; A functional F analogue of Autographa californica nucleopolyhedrovirus GP64 from the Agrotis segetum granulovirus. J Virol 82:8922–8926 [View Article][PubMed]
    [Google Scholar]
  49. Yu I.-L., Lin Y.-C., Robinson J. H., Lung O. 2009; Transduction of vertebrate cells with Spodoptera exigua multiple nucleopolyhedrovirus F protein-pseudotyped gp64-null Autographa californica multiple nucleopolyhedrovirus. J Gen Virol 90:2282–2287 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.041921-0
Loading
/content/journal/jgv/10.1099/vir.0.041921-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed