1887

Abstract

multiple nucleopolyhedrovirus (AcMNPV), a member of the type I alphabaculoviruses, is able to transduce and deliver a functional gene to a range of non-host cells, including many mammalian lines and primary cells, a property mediated by the envelope fusion protein GP64. AcMNPV is non-cytopathic and inherently replication deficient in non-host cells. As such, AcMNPV represents a possible new class of gene therapy vector with potential future clinical utility. Whilst not a problem for gene delivery, the broad tropism displayed for non-host cells is less desirable in a gene therapy vector. The fusion protein F of type II alphabaculoviruses can substitute functionally for GP64, and such pseudotyped viruses display a severely impaired capacity for non-host-cell transduction. Thus, surface decoration of such an F-pseudotyped AcMNPV with cell-binding ligands may restore transduction competence and generate vectors with desirable cell-targeting characteristics. By seamlessly swapping the native coding sequence with each of five sequences encoding different F proteins, a set of F-pseudotyped AcMNPV was generated. This report details their relative abilities both to functionally replace GP64 in viral growth and to transduce human Saos-2 and HeLa cells. All five supported viable infections in insect cell cultures and one, the NPV (MacoNPV) F pseudotype, could be amplified to titres close to those of native AcMNPV. In contrast, none was able to transduce the Saos-2 and HeLa cell lines. The robust support provided by MacoNPV F in virus production makes the corresponding pseudotype a viable scaffold to display surface ligands to direct selective mammalian cell targeting.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.041921-0
2012-07-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/7/1583.html?itemId=/content/journal/jgv/10.1099/vir.0.041921-0&mimeType=html&fmt=ahah

References

  1. Blissard G. W. , Wenz J. R. . ( 1992; ). Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. . J Virol 66:, 6829–6835.[PubMed]
    [Google Scholar]
  2. Boyce F. M. , Bucher N. L. R. . ( 1996; ). Baculovirus-mediated gene transfer into mammalian cells. . Proc Natl Acad Sci U S A 93:, 2348–2352. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chen C.-Y. , Lin C.-Y. , Chen G.-Y. , Hu Y.-C. . ( 2011; ). Baculovirus as a gene delivery vector: recent understandings of molecular alterations in transduced cells and latest applications. . Biotechnol Adv 29:, 618–631. [CrossRef] [PubMed]
    [Google Scholar]
  4. Dolphin C. T. , Hope I. A. . ( 2006; ). Caenorhabditis elegans reporter fusion genes generated by seamless modification of large genomic DNA clones. . Nucleic Acids Res 34:, e72. [CrossRef] [PubMed]
    [Google Scholar]
  5. Dong S. , Wang M. , Qiu Z. , Deng F. , Vlak J. M. , Hu Z. , Wang H. . ( 2010; ). Autographa californica multicapsid nucleopolyhedrovirus efficiently infects Sf9 cells and transduces mammalian cells via direct fusion with the plasma membrane at low pH. . J Virol 84:, 5351–5359. [CrossRef] [PubMed]
    [Google Scholar]
  6. Duisit G. , Saleun S. , Douthe S. , Barsoum J. , Chadeuf G. , Moullier P. . ( 1999; ). Baculovirus vector requires electrostatic interactions including heparan sulfate for efficient gene transfer in mammalian cells. . J Gene Med 1:, 93–102. [CrossRef] [PubMed]
    [Google Scholar]
  7. Gao R. , McCormick C. J. , Arthur M. J. P. , Ruddell R. , Oakley F. , Smart D. E. , Murphy F. R. , Harris M. P. G. , Mann D. A. . ( 2002; ). High efficiency gene transfer into cultured primary rat and human hepatic stellate cells using baculovirus vectors. . Liver 22:, 15–22. [CrossRef] [PubMed]
    [Google Scholar]
  8. Ghosh S. , Parvez M. K. , Banerjee K. , Sarin S. K. , Hasnain S. E. . ( 2002; ). Baculovirus as mammalian cell expression vector for gene therapy: an emerging strategy. . Mol Ther 6:, 5–11. [CrossRef] [PubMed]
    [Google Scholar]
  9. Harrison R. L. , Puttler B. , Popham H. J. R. . ( 2008; ). Genomic sequence analysis of a fast-killing isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus. . J Gen Virol 89:, 775–790. [CrossRef] [PubMed]
    [Google Scholar]
  10. Hefferon K. L. , Oomens A. G. P. , Monsma S. A. , Finnerty C. M. , Blissard G. W. . ( 1999; ). Host cell receptor binding by baculovirus GP64 and kinetics of virion entry. . Virology 258:, 455–468. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hofmann C. , Sandig V. , Jennings G. , Rudolph M. , Schlag P. , Strauss M. . ( 1995; ). Efficient gene transfer into human hepatocytes by baculovirus vectors. . Proc Natl Acad Sci U S A 92:, 10099–10103. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hüser A. , Hofmann C. . ( 2003; ). Baculovirus vectors: novel mammalian cell gene-delivery vehicles and their applications. . Am J Pharmacogenomics 3:, 53–63.[PubMed] [CrossRef]
    [Google Scholar]
  13. Jakubowska A. K. , Peters S. A. , Ziemnicka J. , Vlak J. M. , van Oers M. M. . ( 2006; ). Genome sequence of an enhancin gene-rich nucleopolyhedrovirus (NPV) from Agrotis segetum: collinearity with Spodoptera exigua multiple NPV. . J Gen Virol 87:, 537–551. [CrossRef] [PubMed]
    [Google Scholar]
  14. Jehle J. A. , Blissard G. W. , Bonning B. C. , Cory J. S. , Herniou E. A. , Rohrmann G. F. , Theilmann D. A. , Thiem S. M. , Vlak J. M. . ( 2006; ). On the classification and nomenclature of baculoviruses: a proposal for revision. . Arch Virol 151:, 1257–1266. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kingsley D. H. , Behbahani A. , Rashtian A. , Blissard G. W. , Zimmerberg J. . ( 1999; ). A discrete stage of baculovirus GP64-mediated membrane fusion. . Mol Biol Cell 10:, 4191–4200.[PubMed] [CrossRef]
    [Google Scholar]
  16. Kost T. A. , Condreay J. P. , Ames R. S. . ( 2010; ). Baculovirus gene delivery: a flexible assay development tool. . Curr Gene Ther 10:, 168–173. [CrossRef] [PubMed]
    [Google Scholar]
  17. Laakkonen J. P. , Mäkelä A. R. , Kakkonen E. , Turkki P. , Kukkonen S. , Peränen J. , Ylä-Herttuala S. , Airenne K. J. , Oker-Blom C. . & other authors ( 2009; ). Clathrin-independent entry of baculovirus triggers uptake of E. coli in non-phagocytic human cells. . PLoS ONE 4:, e5093. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lesch H. P. , Makkonen K.-E. , Laitinen A. , Määttä A.-M. , Närvänen O. , Airenne K. J. , Ylä-Herttuala S. . ( 2011; ). Requirements for baculoviruses for clinical gene therapy applications. . J Invertebr Pathol 107: (Suppl.), S106–S112. [CrossRef] [PubMed]
    [Google Scholar]
  19. Li Q. , Donly C. , Li L. , Willis L. G. , Theilmann D. A. , Erlandson M. . ( 2002; ). Sequence and organization of the Mamestra configurata nucleopolyhedrovirus genome. . Virology 294:, 106–121. [CrossRef] [PubMed]
    [Google Scholar]
  20. Liang C. , Song J. , Chen X. . ( 2005; ). The GP64 protein of Autographa californica multiple nucleopolyhedrovirus rescues Helicoverpa armigera nucleopolyhedrovirus transduction in mammalian cells. . J Gen Virol 86:, 1629–1635. [CrossRef] [PubMed]
    [Google Scholar]
  21. Lin C.-Y. , Lu C.-H. , Luo W.-Y. , Chang Y.-H. , Sung L.-Y. , Chiu H.-Y. , Hu Y.-C. . ( 2010; ). Baculovirus as a gene delivery vector for cartilage and bone tissue engineering. . Curr Gene Ther 10:, 242–254. [CrossRef] [PubMed]
    [Google Scholar]
  22. Long G. , Westenberg M. , Wang H. L. , Vlak J. M. , Hu Z. . ( 2006a; ). Function, oligomerization and N-linked glycosylation of the Helicoverpa armigera single nucleopolyhedrovirus envelope fusion protein. . J Gen Virol 87:, 839–846. [CrossRef] [PubMed]
    [Google Scholar]
  23. Long G. , Pan X. , Kormelink R. , Vlak J. M. . ( 2006b; ). Functional entry of baculovirus into insect and mammalian cells is dependent on clathrin-mediated endocytosis. . J Virol 80:, 8830–8833. [CrossRef] [PubMed]
    [Google Scholar]
  24. Luckow V. A. , Lee S. C. , Barry G. F. , Olins P. O. . ( 1993; ). Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli . . J Virol 67:, 4566–4579.[PubMed]
    [Google Scholar]
  25. Lung O. , Westenberg M. , Vlak J. M. , Zuidema D. , Blissard G. W. . ( 2002; ). Pseudotyping Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV): F proteins from group II NPVs are functionally analogous to AcMNPV GP64. . J Virol 76:, 5729–5736. [CrossRef] [PubMed]
    [Google Scholar]
  26. Ma L. , Tamarina N. , Wang Y. , Kuznetsov A. , Patel N. , Kending C. , Hering B. J. , Philipson L. H. . ( 2000; ). Baculovirus-mediated gene transfer into pancreatic islet cells. . Diabetes 49:, 1986–1991. [CrossRef] [PubMed]
    [Google Scholar]
  27. Matilainen H. , Rinne J. , Gilbert L. , Marjomäki V. , Reunanen H. , Oker-Blom C. . ( 2005; ). Baculovirus entry into human hepatoma cells. . J Virol 79:, 15452–15459. [CrossRef] [PubMed]
    [Google Scholar]
  28. Monsma S. A. , Oomens A. G. P. , Blissard G. W. . ( 1996; ). The GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. . J Virol 70:, 4607–4616.[PubMed]
    [Google Scholar]
  29. Nicholson L. J. , Philippe M. , Paine A. J. , Mann D. A. , Dolphin C. T. . ( 2005; ). RNA interference mediated in human primary cells via recombinant baculoviral vectors. . Mol Ther 11:, 638–644. [CrossRef] [PubMed]
    [Google Scholar]
  30. O’Reilly D. R. , Miller L. K. , Luckow V. A. . ( 1992; ). Baculovirus Expression Vectors, a Laboratory Manual. New York, NY:: W. H. Freeman and Co;.
    [Google Scholar]
  31. Ong S. T. , Li F. , Du J. , Tan Y. W. , Wang S. . ( 2005; ). Hybrid cytomegalovirus enhancer-h1 promoter-based plasmid and baculovirus vectors mediate effective RNA interference. . Hum Gene Ther 16:, 1404–1412. [CrossRef] [PubMed]
    [Google Scholar]
  32. Oomens A. G. P. , Blissard G. W. . ( 1999; ). Requirement for GP64 to drive efficient budding of Autographa californica multicapsid nucleopolyhedrovirus. . Virology 254:, 297–314. [CrossRef] [PubMed]
    [Google Scholar]
  33. Oomens A. G. P. , Wertz G. W. . ( 2004; ). The baculovirus GP64 protein mediates highly stable infectivity of a human respiratory syncytial virus lacking its homologous transmembrane glycoproteins. . J Virol 78:, 124–135. [CrossRef] [PubMed]
    [Google Scholar]
  34. Pang Y. , Yu J. , Wang L. , Hu X. , Bao W. , Li G. , Chen C. , Han H. , Hu S. , Yang H. . ( 2001; ). Sequence analysis of the Spodoptera litura multicapsid nucleopolyhedrovirus genome. . Virology 287:, 391–404. [CrossRef] [PubMed]
    [Google Scholar]
  35. Pearson M. N. , Rohrmann G. F. . ( 2002; ). Transfer, incorporation, and substitution of envelope fusion proteins among members of the Baculoviridae, Orthomyxoviridae, and Metaviridae (insect retrovirus) families. . J Virol 76:, 5301–5304. [CrossRef] [PubMed]
    [Google Scholar]
  36. Sarkis C. , Serguera C. , Petres S. , Buchet D. , Ridet J. L. , Edelman L. , Mallet J. . ( 2000; ). Efficient transduction of neural cells in vitro and in vivo by a baculovirus-derived vector. . Proc Natl Acad Sci U S A 97:, 14638–14643. [CrossRef] [PubMed]
    [Google Scholar]
  37. Schauber C. A. , Tuerk M. J. , Pacheco C. D. , Escarpe P. A. , Veres G. . ( 2004; ). Lentiviral vectors pseudotyped with baculovirus gp64 efficiently transduce mouse cells in vivo and show tropism restriction against hematopoietic cell types in vitro . . Gene Ther 11:, 266–275. [CrossRef] [PubMed]
    [Google Scholar]
  38. Stavropoulos T. A. , Strathdee C. A. . ( 2001; ). Synergy between tetA and rpsL provides high-stringency positive and negative selection in bacterial artificial chromosome vectors. . Genomics 72:, 99–104. [CrossRef] [PubMed]
    [Google Scholar]
  39. Szewczyk B. , Hoyos-Carvajal L. , Paluszek M. , Skrzecz I. , Lobo de Souza M. . ( 2006; ). Baculoviruses – re-emerging biopesticides. . Biotechnol Adv 24:, 143–160. [CrossRef] [PubMed]
    [Google Scholar]
  40. Tani H. , Nishijima M. , Ushijima H. , Miyamura T. , Matsuura Y. . ( 2001; ). Characterization of cell-surface determinants important for baculovirus infection. . Virology 279:, 343–353. [CrossRef] [PubMed]
    [Google Scholar]
  41. Thompson J. D. , Higgins D. G. , Gibson T. J. . ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  42. van Oers M. M. . ( 2011; ). Opportunities and challenges for the baculovirus expression system. . J Invertebr Pathol 107: (Suppl.), S3–S15. [CrossRef] [PubMed]
    [Google Scholar]
  43. van Oers M. M. , Abma-Henkens M. H. C. , Herniou E. A. , de Groot J. C. W. , Peters S. , Vlak J. M. . ( 2005; ). Genome sequence of Chrysodeixis chalcites nucleopolyhedrovirus, a baculovirus with two DNA photolyase genes. . J Gen Virol 86:, 2069–2080. [CrossRef] [PubMed]
    [Google Scholar]
  44. Wang S. , Balasundaram G. . ( 2010; ). Potential cancer gene therapy by baculoviral transduction. . Curr Gene Ther 10:, 214–225. [CrossRef] [PubMed]
    [Google Scholar]
  45. Westenberg M. , Uijtdewilligen P. , Vlak J. M. . ( 2007; ). Baculovirus envelope fusion proteins F and GP64 exploit distinct receptors to gain entry into cultured insect cells. . J Gen Virol 88:, 3302–3306. [CrossRef] [PubMed]
    [Google Scholar]
  46. Westenberg M. , Soedling H. M. , Mann D. A. , Nicholson L. J. , Dolphin C. T. . ( 2010; ). Counter-selection recombineering of the baculovirus genome: a strategy for seamless modification of repeat-containing BACs. . Nucleic Acids Res 38:, e166. [CrossRef] [PubMed]
    [Google Scholar]
  47. Whitt M. A. , Manning J. S. . ( 1988; ). A phosphorylated 34-kDa protein and a subpopulation of polyhedrin are thiol linked to the carbohydrate layer surrounding a baculovirus occlusion body. . Virology 163:, 33–42. [CrossRef] [PubMed]
    [Google Scholar]
  48. Yin F. , Wang M. , Tan Y. , Deng F. , Vlak J. M. , Hu Z. , Wang H. . ( 2008; ). A functional F analogue of Autographa californica nucleopolyhedrovirus GP64 from the Agrotis segetum granulovirus. . J Virol 82:, 8922–8926. [CrossRef] [PubMed]
    [Google Scholar]
  49. Yu I.-L. , Lin Y.-C. , Robinson J. H. , Lung O. . ( 2009; ). Transduction of vertebrate cells with Spodoptera exigua multiple nucleopolyhedrovirus F protein-pseudotyped gp64-null Autographa californica multiple nucleopolyhedrovirus. . J Gen Virol 90:, 2282–2287. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.041921-0
Loading
/content/journal/jgv/10.1099/vir.0.041921-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error