1887

Abstract

The rotavirus (RV) non-structural protein NSP3 forms a dimer that has binding domains for the translation initiation factor eIF4G and for a conserved 3′-terminal sequence of viral mRNAs. Through these activities, NSP3 has been proposed to promote viral mRNA translation by directing circularization of viral polysomes. In addition, by disrupting interactions between eIF4G and the poly(A)-binding protein (PABP), NSP3 has been suggested to inhibit translation of host polyadenylated mRNAs and to stimulate relocalization of PABP from the cytoplasm to the nucleus. Herein, we report the isolation and characterization of SA11-4Fg7re, an SA11-4F RV derivative that contains a large sequence duplication initiating within the genome segment (gene 7) encoding NSP3. Our analysis showed that mutant NSP3 (NSP3m) encoded by SA11-4Fg7re is almost twice the size of the wild-type protein and retains the capacity to dimerize. However, in comparison to wild-type NSP3, NSP3m has a decreased capacity to interact with eIF4G and to suppress the translation of polyadenylated mRNAs. In addition, NSP3m fails to induce the nuclear accumulation of PABP in infected cells. Despite the defective activities of NSP3m, the levels of viral protein and progeny virus produced in SA11-4Fg7re- and SA11-4F-infected cells were indistinguishable. Collectively, these data are consistent with a role for NSP3 in suppressing host protein synthesis through antagonism of PABP activity, but also suggest that NSP3 functions may have little or no impact on the efficiency of virus replication in widely used RV-permissive cell lines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.041830-0
2012-07-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/7/1483.html?itemId=/content/journal/jgv/10.1099/vir.0.041830-0&mimeType=html&fmt=ahah

References

  1. Afonina E., Stauber R., Pavlakis G. N.. ( 1998;). The human poly(A)-binding protein 1 shuttles between the nucleus and the cytoplasm. . J Biol Chem 273:, 13015–13021. [CrossRef][PubMed]
    [Google Scholar]
  2. Alam M. M., Kobayashi N., Ishino M., Nagashima S., Paul S. K., Chawla-Sarkar M., Krishnan T., Naik T. N.. ( 2008;). Identical rearrangement of NSP3 genes found in three independently isolated virus clones derived from mixed infection and multiple passages of rotaviruses. . Arch Virol 153:, 555–559. [CrossRef][PubMed]
    [Google Scholar]
  3. Amrani N., Ghosh S., Mangus D. A., Jacobson A.. ( 2008;). Translation factors promote the formation of two states of the closed-loop mRNP. . Nature 453:, 1276–1280. [CrossRef][PubMed]
    [Google Scholar]
  4. Arnold M. M., Patton J. T.. ( 2011;). Diversity of interferon antagonist activities mediated by NSP1 proteins of different rotavirus strains. . J Virol 85:, 1970–1979. [CrossRef][PubMed]
    [Google Scholar]
  5. Arnold M., Patton J. T., McDonald S. M.. ( 2009;). Culturing, storage, and quantification of rotaviruses. . Curr Protoc Microbiol Chapter 15:, 15C.3.[PubMed]
    [Google Scholar]
  6. Ballard A., McCrae M. A., Desselberger U.. ( 1992;). Nucleotide sequences of normal and rearranged RNA segments 10 of human rotaviruses. . J Gen Virol 73:, 633–638. [CrossRef][PubMed]
    [Google Scholar]
  7. Barro M., Patton J. T.. ( 2005;). Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3. . Proc Natl Acad Sci U S A 102:, 4114–4119. [CrossRef][PubMed]
    [Google Scholar]
  8. Both G. W., Bellamy A. R., Siegman L. J.. ( 1984;). Nucleotide sequence of the dsRNA genomic segment 7 of simian 11 rotavirus. . Nucleic Acids Res 12:, 1621–1626. [CrossRef][PubMed]
    [Google Scholar]
  9. Cao D., Barro M., Hoshino Y.. ( 2008;). Porcine rotavirus bearing an aberrant gene stemming from an intergenic recombination of the NSP2 and NSP5 genes is defective and interfering. . J Virol 82:, 6073–6077. [CrossRef][PubMed]
    [Google Scholar]
  10. Clapp L. L., Patton J. T.. ( 1991;). Rotavirus morphogenesis: domains in the major inner capsid protein essential for binding to single-shelled particles and for trimerization. . Virology 180:, 697–708. [CrossRef][PubMed]
    [Google Scholar]
  11. Deo R. C., Groft C. M., Rajashankar K. R., Burley S. K.. ( 2002;). Recognition of the rotavirus mRNA 3′ consensus by an asymmetric NSP3 homodimer. . Cell 108:, 71–81. [CrossRef][PubMed]
    [Google Scholar]
  12. Dreher T. W., Miller W. A.. ( 2006;). Translational control in positive strand RNA plant viruses. . Virology 344:, 185–197. [CrossRef][PubMed]
    [Google Scholar]
  13. Estes M. K., Kapikian A.. ( 2007;). Rotaviruses. . In Fields Virology, pp. 1917–1975. Edited by Knipe D., Griffin D., Lamb R., Martin M., Roizman B., Straus S... Philadelphia:: Wolters Kluwer Health; Lippincott, Williams & Wilkins;.
    [Google Scholar]
  14. Fromont-Racine M., Senger B., Saveanu C., Fasiolo F.. ( 2003;). Ribosome assembly in eukaryotes. . Gene 313:, 17–42. [CrossRef][PubMed]
    [Google Scholar]
  15. Gault E., Schnepf N., Poncet D., Servant A., Teran S., Garbarg-Chenon A.. ( 2001;). A human rotavirus with rearranged genes 7 and 11 encodes a modified NSP3 protein and suggests an additional mechanism for gene rearrangement. . J Virol 75:, 7305–7314. [CrossRef][PubMed]
    [Google Scholar]
  16. Gingras A. C., Raught B., Sonenberg N.. ( 1999;). eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. . Annu Rev Biochem 68:, 913–963. [CrossRef][PubMed]
    [Google Scholar]
  17. Gorziglia M., Larrea C., Liprandi F., Esparza J.. ( 1985;). Biochemical evidence for the oligomeric (possibly trimeric) structure of the major inner capsid polypeptide (45K) of rotaviruses. . J Gen Virol 66:, 1889–1900. [CrossRef][PubMed]
    [Google Scholar]
  18. Graff J. W., Ewen J., Ettayebi K., Hardy M. E.. ( 2007;). Zinc-binding domain of rotavirus NSP1 is required for proteasome-dependent degradation of IRF3 and autoregulatory NSP1 stability. . J Gen Virol 88:, 613–620. [CrossRef][PubMed]
    [Google Scholar]
  19. Groft C. M., Burley S. K.. ( 2002;). Recognition of eIF4G by rotavirus NSP3 reveals a basis for mRNA circularization. . Mol Cell 9:, 1273–1283. [CrossRef][PubMed]
    [Google Scholar]
  20. Groppo R., Richter J. D.. ( 2009;). Translational control from head to tail. . Curr Opin Cell Biol 21:, 444–451. [CrossRef][PubMed]
    [Google Scholar]
  21. Harb M., Becker M. M., Vitour D., Baron C. H., Vende P., Brown S. C., Bolte S., Arold S. T., Poncet D.. ( 2008;). Nuclear localization of cytoplasmic poly(A)-binding protein upon rotavirus infection involves the interaction of NSP3 with eIF4G and RoXaN. . J Virol 82:, 11283–11293. [CrossRef][PubMed]
    [Google Scholar]
  22. Hua J., Patton J. T.. ( 1994;). The carboxyl-half of the rotavirus nonstructural protein NS53 (NSP1) is not required for virus replication. . Virology 198:, 567–576. [CrossRef][PubMed]
    [Google Scholar]
  23. Hundley F., Biryahwaho B., Gow M., Desselberger U.. ( 1985;). Genome rearrangements of bovine rotavirus after serial passage at high multiplicity of infection. . Virology 143:, 88–103. [CrossRef][PubMed]
    [Google Scholar]
  24. Imai M., Akatani K., Ikegami N., Furuichi Y.. ( 1983;). Capped and conserved terminal structures in human rotavirus genome double-stranded RNA segments. . J Virol 47:, 125–136.[PubMed]
    [Google Scholar]
  25. Kahvejian A., Roy G., Sonenberg N.. ( 2001;). The mRNA closed-loop model: the function of PABP and PABP-interacting proteins in mRNA translation. . Cold Spring Harb Symp Quant Biol 66:, 293–300. [CrossRef][PubMed]
    [Google Scholar]
  26. Kojima K., Taniguchi K., Urasawa T., Urasawa S.. ( 1996;). Sequence analysis of normal and rearranged NSP5 genes from human rotavirus strains isolated in nature: implications for the occurrence of the rearrangement at the step of plus strand synthesis. . Virology 224:, 446–452. [CrossRef][PubMed]
    [Google Scholar]
  27. Kojima K., Taniguchi K., Kawagishi-Kobayashi M., Matsuno S., Urasawa S.. ( 2000;). Rearrangement generated in double genes, NSP1 and NSP3, of viable progenies from a human rotavirus strain. . Virus Res 67:, 163–171. [CrossRef][PubMed]
    [Google Scholar]
  28. Kozak M.. ( 1981;). Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. . Nucleic Acids Res 9:, 5233–5252. [CrossRef][PubMed]
    [Google Scholar]
  29. Lawton J. A., Estes M. K., Prasad B. V.. ( 2000;). Mechanism of genome transcription in segmented dsRNA viruses. . Adv Virus Res 55:, 185–229. [CrossRef][PubMed]
    [Google Scholar]
  30. Lupas A., Van Dyke M., Stock J.. ( 1991;). Predicting coiled coils from protein sequences. . Science 252:, 1162–1164. [CrossRef]
    [Google Scholar]
  31. Mangus D. A., Evans M. C., Jacobson A.. ( 2003;). Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. . Genome Biol 4:, 223. [CrossRef][PubMed]
    [Google Scholar]
  32. Matthijnssens J., Rahman M., Van Ranst M.. ( 2006;). Loop model: mechanism to explain partial gene duplications in segmented dsRNA viruses. . Biochem Biophys Res Commun 340:, 140–144. [CrossRef][PubMed]
    [Google Scholar]
  33. Mitchell D. B., Both G. W.. ( 1990;). Completion of the genomic sequence of the simian rotavirus SA11: nucleotide sequences of segments 1, 2, and 3. . Virology 177:, 324–331. [CrossRef][PubMed]
    [Google Scholar]
  34. Montero H., Arias C. F., Lopez S.. ( 2006;). Rotavirus nonstructural protein NSP3 is not required for viral protein synthesis. . J Virol 80:, 9031–9038. [CrossRef][PubMed]
    [Google Scholar]
  35. Montero H., Rojas M., Arias C. F., López S.. ( 2008;). Rotavirus infection induces the phosphorylation of eIF2α but prevents the formation of stress granules. . J Virol 82:, 1496–1504. [CrossRef][PubMed]
    [Google Scholar]
  36. Mossel E. C., Ramig R. F.. ( 2002;). Rotavirus genome segment 7 (NSP3) is a determinant of extraintestinal spread in the neonatal mouse. . J Virol 76:, 6502–6509. [CrossRef][PubMed]
    [Google Scholar]
  37. Padilla-Noriega L., Paniagua O., Guzmán-León S.. ( 2002;). Rotavirus protein NSP3 shuts off host cell protein synthesis. . Virology 298:, 1–7. [CrossRef][PubMed]
    [Google Scholar]
  38. Patton J. T., Chen D.. ( 1999;). RNA-binding and capping activities of proteins in rotavirus open cores. . J Virol 73:, 1382–1391.[PubMed]
    [Google Scholar]
  39. Patton J. T., Taraporewala Z., Chen D., Chizhikov V., Jones M., Elhelu A., Collins M., Kearney K., Wagner M.. & other authors ( 2001;). Effect of intragenic rearrangement and changes in the 3′ consensus sequence on NSP1 expression and rotavirus replication. . J Virol 75:, 2076–2086. [CrossRef][PubMed]
    [Google Scholar]
  40. Piron M., Vende P., Cohen J., Poncet D.. ( 1998;). Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. . EMBO J 17:, 5811–5821. [CrossRef][PubMed]
    [Google Scholar]
  41. Piron M., Delaunay T., Grosclaude J., Poncet D.. ( 1999;). Identification of the RNA-binding, dimerization, and eIF4GI-binding domains of rotavirus nonstructural protein NSP3. . J Virol 73:, 5411–5421.[PubMed]
    [Google Scholar]
  42. Poncet D., Aponte C., Cohen J.. ( 1993;). Rotavirus protein NSP3 (NS34) is bound to the 3′ end consensus sequence of viral mRNAs in infected cells. . J Virol 67:, 3159–3165.[PubMed]
    [Google Scholar]
  43. Poncet D., Laurent S., Cohen J.. ( 1994;). Four nucleotides are the minimal requirement for RNA recognition by rotavirus non-structural protein NSP3. . EMBO J 13:, 4165–4173.[PubMed]
    [Google Scholar]
  44. Powell M. L.. ( 2010;). Translational termination-reinitiation in RNA viruses. . Biochem Soc Trans 38:, 1558–1564. [CrossRef][PubMed]
    [Google Scholar]
  45. Sabara M., Ready K. F., Frenchick P. J., Babiuk L. A.. ( 1987;). Biochemical evidence for the oligomeric arrangement of bovine rotavirus nucleocapsid protein and its possible significance in the immunogenicity of this protein. . J Gen Virol 68:, 123–133. [CrossRef][PubMed]
    [Google Scholar]
  46. Scott G. E., Tarlow O., McCrae M. A.. ( 1989;). Detailed structural analysis of a genome rearrangement in bovine rotavirus. . Virus Res 14:, 119–127. [CrossRef][PubMed]
    [Google Scholar]
  47. Shen S., Burke B., Desselberger U.. ( 1994;). Rearrangement of the VP6 gene of a group A rotavirus in combination with a point mutation affecting trimer stability. . J Virol 68:, 1682–1688.[PubMed]
    [Google Scholar]
  48. Taniguchi K., Kojima K., Urasawa S.. ( 1996;). Nondefective rotavirus mutants with an NSP1 gene which has a deletion of 500 nucleotides, including a cysteine-rich zinc finger motif-encoding region (nucleotides 156 to 248), or which has a nonsense codon at nucleotides 153-155. . J Virol 70:, 4125–4130.[PubMed]
    [Google Scholar]
  49. Taraporewala Z., Chen D., Patton J. T.. ( 1999;). Multimers formed by the rotavirus nonstructural protein NSP2 bind to RNA and have nucleoside triphosphatase activity. . J Virol 73:, 9934–9943.[PubMed]
    [Google Scholar]
  50. Tian Y., Tarlow O., Ballard A., Desselberger U., McCrae M. A.. ( 1993;). Genomic concatemerization/deletion in rotaviruses: a new mechanism for generating rapid genetic change of potential epidemiological importance. . J Virol 67:, 6625–6632.[PubMed]
    [Google Scholar]
  51. Troupin C., Dehée A., Schnuriger A., Vende P., Poncet D., Garbarg-Chenon A.. ( 2010;). Rearranged genomic RNA segments offer a new approach to the reverse genetics of rotaviruses. . J Virol 84:, 6711–6719. [CrossRef][PubMed]
    [Google Scholar]
  52. Vende P., Piron M., Castagné N., Poncet D.. ( 2000;). Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3′ end. . J Virol 74:, 7064–7071. [CrossRef][PubMed]
    [Google Scholar]
  53. Vitour D., Lindenbaum P., Vende P., Becker M. M., Poncet D.. ( 2004;). RoXaN, a novel cellular protein containing TPR, LD, and zinc finger motifs, forms a ternary complex with eukaryotic initiation factor 4G and rotavirus NSP3. . J Virol 78:, 3851–3862. [CrossRef][PubMed]
    [Google Scholar]
  54. Ward C. W., Elleman T. C., Azad A. A., Dyall-Smith M. L.. ( 1984;). Nucleotide sequence of gene segment 9 encoding a nonstructural protein of UK bovine rotavirus. . Virology 134:, 249–253. [CrossRef][PubMed]
    [Google Scholar]
  55. Yuan L., Rao S., Azevedo M. S. P., Hoshino Y., Patton J. T., Mertens P., Turnbull M., Saif L. J.. ( 2006;). Sequence analysis of rearranged RNA segments 5, 7 and 8 of attenuated Wa strain human rotavirus (HRV). In Programme and Abstracts, 9th International Symposium on Double-Stranded RNA, p. 85. Cape Town, South Africa.
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.041830-0
Loading
/content/journal/jgv/10.1099/vir.0.041830-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error