Murine cytomegalovirus infection of cultured mouse cells induces expression of miR-7a Free

Abstract

One goal of virus infection is to reprogramme the host cell to optimize virus replication. As part of this process, viral microRNAs (miRNAs) may compete for components of the miRNA/small interfering RNA pathway, as well as regulate cellular targets. Murine cytomegalovirus (MCMV) has been described to generate large numbers of viral miRNAs during lytic infection and was therefore used to analyse the impact of viral miRNAs on the host-cell small-RNA system, as well as to check for sorting of viral small RNAs into specific Argonaute (Ago) proteins. Deep-sequencing analysis of MCMV-infected cells revealed that viral miRNAs represented only ~13 % of all detected miRNAs. All previously described MCMV miRNAs with the exception of miR-m88-1* were confirmed, and for the MCMV miR-m01-1 hairpin, an additional miRNA, designated miR-m01-1-3p, was found. Its presence was confirmed by quantitative real-time PCR and Northern blotting. Deep sequencing after RNA-induced silencing complex (RISC) immunoprecipitation with antibodies specific for either Ago1 or Ago2 showed that all MCMV miRNAs were loaded into both RISCs. The ratio of MCMV to mouse miRNAs was not increased after immunoprecipitation of Ago proteins. Viral miRNAs therefore did not overwhelm the host miRNA processing system, nor were they incorporated preferentially into RISCs. Three mouse miRNAs were found that showed altered expression as a result of MCMV infection. Downregulation of miR-27a, as described previously, could be confirmed. In addition, miR-26a was downregulated, and upregulation of miR-7a dependent on viral protein expression could be observed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.041822-0
2012-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/7/1537.html?itemId=/content/journal/jgv/10.1099/vir.0.041822-0&mimeType=html&fmt=ahah

References

  1. Alon S., Vigneault F., Eminaga S., Christodoulou D. C., Seidman J. G., Church G. M., Eisenberg E. 2011; Barcoding bias in high-throughput multiplex sequencing of miRNA. Genome Res 21:1506–1511 [View Article][PubMed]
    [Google Scholar]
  2. Andersson M. G., Haasnoot P. C., Xu N., Berenjian S., Berkhout B., Akusjärvi G. 2005; Suppression of RNA interference by adenovirus virus-associated RNA. J Virol 79:9556–9565 [View Article][PubMed]
    [Google Scholar]
  3. Azuma-Mukai A., Oguri H., Mituyama T., Qian Z. R., Asai K., Siomi H., Siomi M. C. 2008; Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing. Proc Natl Acad Sci U S A 105:7964–7969 [View Article][PubMed]
    [Google Scholar]
  4. Bartel D. P. 2004; MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297 [View Article][PubMed]
    [Google Scholar]
  5. Biggar K. K., Storey K. B. 2011; The emerging roles of microRNAs in the molecular responses of metabolic rate depression. J Mol Cell Biol 3:167–175 [View Article][PubMed]
    [Google Scholar]
  6. Buck A. H., Santoyo-Lopez J., Robertson K. A., Kumar D. S., Reczko M., Ghazal P. 2007; Discrete clusters of virus-encoded microRNAs are associated with complementary strands of the genome and the 7.2-kilobase stable intron in murine cytomegalovirus. J Virol 81:13761–13770 [View Article][PubMed]
    [Google Scholar]
  7. Buck A. H., Perot J., Chisholm M. A., Kumar D. S., Tuddenham L., Cognat V., Marcinowski L., Dölken L., Pfeffer S. 2010; Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. RNA 16:307–315 [View Article][PubMed]
    [Google Scholar]
  8. Bueno M. J., Malumbres M. 2011; MicroRNAs and the cell cycle. Biochim Biophys Acta 1812:592–601[PubMed] [CrossRef]
    [Google Scholar]
  9. Cameron J. E., Yin Q., Fewell C., Lacey M., McBride J., Wang X., Lin Z., Schaefer B. C., Flemington E. K. 2008; Epstein–Barr virus latent membrane protein 1 induces cellular microRNA miR-146a, a modulator of lymphocyte signaling pathways. J Virol 82:1946–1958 [View Article][PubMed]
    [Google Scholar]
  10. Cazalla D., Yario T., Steitz J. A. 2010; Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science 328:1563–1566 [View Article][PubMed]
    [Google Scholar]
  11. Czech B., Malone C. D., Zhou R., Stark A., Schlingeheyde C., Dus M., Perrimon N., Kellis M., Wohlschlegel J. A. other authors 2008; An endogenous small interfering RNA pathway in Drosophila . Nature 453:798–802 [View Article][PubMed]
    [Google Scholar]
  12. Czech B., Zhou R., Erlich Y., Brennecke J., Binari R., Villalta C., Gordon A., Perrimon N., Hannon G. J. 2009; Hierarchical rules for Argonaute loading in Drosophila . Mol Cell 36:445–456 [View Article][PubMed]
    [Google Scholar]
  13. Dölken L., Perot J., Cognat V., Alioua A., John M., Soutschek J., Ruzsics Z., Koszinowski U., Voinnet O., Pfeffer S. 2007; Mouse cytomegalovirus microRNAs dominate the cellular small RNA profile during lytic infection and show features of posttranscriptional regulation. J Virol 81:13771–13782 [View Article][PubMed]
    [Google Scholar]
  14. Du T., Zamore P. D. 2005; microPrimer: the biogenesis and function of microRNA. Development 132:4645–4652 [View Article][PubMed]
    [Google Scholar]
  15. Ebert M. S., Neilson J. R., Sharp P. A. 2007; MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726 [View Article][PubMed]
    [Google Scholar]
  16. Fang Y. X., Xue J. L., Shen Q., Chen J., Tian L. 2012; miR-7 inhibits tumor growth and metastasis by targeting the PI3K/AKT pathway in hepatocellular carcinoma. Hepatology [Epub ahead of print]. [View Article][PubMed]
    [Google Scholar]
  17. Förstemann K., Tomari Y., Du T., Vagin V. V., Denli A. M., Bratu D. P., Klattenhoff C., Theurkauf W. E., Zamore P. D. 2005; Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol 3:e236 [View Article][PubMed]
    [Google Scholar]
  18. Förstemann K., Horwich M. D., Wee L., Tomari Y., Zamore P. D. 2007; Drosophila microRNAs are sorted into functionally distinct Argonaute complexes after production by Dicer-1. Cell 130:287–297 [View Article][PubMed]
    [Google Scholar]
  19. Gantier M. P., McCoy C. E., Rusinova I., Saulep D., Wang D., Xu D., Irving A. T., Behlke M. A., Hertzog P. J. other authors 2011; Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res 39:5692–5703 [View Article][PubMed]
    [Google Scholar]
  20. Ghildiyal M., Xu J., Seitz H., Weng Z., Zamore P. D. 2010; Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA 16:43–56 [View Article][PubMed]
    [Google Scholar]
  21. Gu S., Jin L., Zhang F., Huang Y., Grimm D., Rossi J. J., Kay M. A. 2011; Thermodynamic stability of small hairpin RNAs highly influences the loading process of different mammalian Argonautes. Proc Natl Acad Sci U S A 108:9208–9213 [View Article][PubMed]
    [Google Scholar]
  22. Hartig J. V., Förstemann K. 2011; Loqs-PD and R2D2 define independent pathways for RISC generation in Drosophila . Nucleic Acids Res 39:3836–3851 [View Article][PubMed]
    [Google Scholar]
  23. He L., Hannon G. J. 2004; MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531 [View Article][PubMed]
    [Google Scholar]
  24. Jopling C. L., Yi M., Lancaster A. M., Lemon S. M., Sarnow P. 2005; Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309:1577–1581 [View Article][PubMed]
    [Google Scholar]
  25. Kefas B., Godlewski J., Comeau L., Li Y., Abounader R., Hawkinson M., Lee J., Fine H., Chiocca E. A. other authors 2008; microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68:3566–3572 [View Article][PubMed]
    [Google Scholar]
  26. Langmead B., Trapnell C., Pop M., Salzberg S. L. 2009; Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25 [View Article][PubMed]
    [Google Scholar]
  27. Lee Y., Jeon K., Lee J.-T., Kim S., Kim V. N. 2002; MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670 [View Article][PubMed]
    [Google Scholar]
  28. Lee K. M., Choi E. J., Kim I. A. 2011; microRNA-7 increases radiosensitivity of human cancer cells with activated EGFR-associated signaling. Radiother Oncol 101:171–176 [View Article][PubMed]
    [Google Scholar]
  29. Libri V., Helwak A., Miesen P., Santhakumar D., Borger J. G., Kudla G., Grey F., Tollervey D., Buck A. H. 2012; Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target. Proc Natl Acad Sci U S A 109:279–284 [View Article][PubMed]
    [Google Scholar]
  30. Liu J., Carmell M. A., Rivas F. V., Marsden C. G., Thomson J. M., Song J.-J., Hammond S. M., Joshua-Tor L., Hannon G. J. 2004; Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441 [View Article][PubMed]
    [Google Scholar]
  31. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408 [View Article][PubMed]
    [Google Scholar]
  32. Lu S., Cullen B. R. 2004; Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis. J Virol 78:12868–12876 [View Article][PubMed]
    [Google Scholar]
  33. Marcinowski L., Tanguy M., Krmpotic A., Rädle B., Lisnić V. J., Tuddenham L., Chane-Woon-Ming B., Ruzsics Z., Erhard F. other authors 2012; Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo . PLoS Pathog 8:e1002510 [View Article][PubMed]
    [Google Scholar]
  34. McInnes N., Sadlon T. J., Brown C. Y., Pederson S., Beyer M., Schultze J. L., McColl S., Goodall G. J., Barry S. C. 2012; FOXP3 and FOXP3-regulated microRNAs suppress SATB1 in breast cancer cells. Oncogene 31:1045–1054[PubMed] [CrossRef]
    [Google Scholar]
  35. Meister G., Tuschl T. 2004; Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349 [View Article][PubMed]
    [Google Scholar]
  36. Meister G., Landthaler M., Patkaniowska A., Dorsett Y., Teng G., Tuschl T. 2004; Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197 [View Article][PubMed]
    [Google Scholar]
  37. Melnick M., Abichaker G., Htet K., Sedghizadeh P., Jaskoll T. 2011; Small molecule inhibitors of the host cell COX/AREG/EGFR/ERK pathway attenuate cytomegalovirus-induced pathogenesis. Exp Mol Pathol 91:400–410 [View Article][PubMed]
    [Google Scholar]
  38. Mohr C. A., Cîcîn-Saîn L., Wagner M., Sacher T., Schnee M., Ruzsics Z., Koszinowski U. H. 2008; Engineering of cytomegalovirus genomes for recombinant live herpesvirus vaccines. Int J Med Microbiol 298:115–125 [View Article][PubMed]
    [Google Scholar]
  39. Okamura K., Liu N., Lai E. C. 2009; Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Mol Cell 36:431–444 [View Article][PubMed]
    [Google Scholar]
  40. Otsuka M., Jing Q., Georgel P., New L., Chen J., Mols J., Kang Y. J., Jiang Z., Du X. other authors 2007; Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity 27:123–134 [View Article][PubMed]
    [Google Scholar]
  41. Ouda R., Onomoto K., Takahasi K., Edwards M. R., Kato H., Yoneyama M., Fujita T. 2011; Retinoic acid-inducible gene I-inducible miR-23b inhibits infections by minor group rhinoviruses through down-regulation of the very low density lipoprotein receptor. J Biol Chem 286:26210–26219 [View Article][PubMed]
    [Google Scholar]
  42. Pfeffer S., Sewer A., Lagos-Quintana M., Sheridan R., Sander C., Grässer F. A., van Dyk L. F., Ho C. K., Shuman S. other authors 2005; Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276 [View Article][PubMed]
    [Google Scholar]
  43. Plaisance-Bonstaff K., Renne R. 2011; Viral miRNAs. Methods Mol Biol 721:43–66 [View Article][PubMed]
    [Google Scholar]
  44. Poole E., McGregor Dallas S. R., Colston J., Joseph R. S., Sinclair J. 2011; Virally induced changes in cellular microRNAs maintain latency of human cytomegalovirus in CD34+ progenitors. J Gen Virol 92:1539–1549 [View Article][PubMed]
    [Google Scholar]
  45. Raabe C. A., Hoe C. H., Randau G., Brosius J., Tang T. H., Rozhdestvensky T. S. 2011; The rocks and shallows of deep RNA sequencing: examples in the Vibrio cholerae RNome. RNA 17:1357–1366 [View Article][PubMed]
    [Google Scholar]
  46. Sayed D., Abdellatif M. 2011; MicroRNAs in development and disease. Physiol Rev 91:827–887 [View Article][PubMed]
    [Google Scholar]
  47. Stark T. J., Arnold J. D., Spector D. H., Yeo G. W. 2012; High-resolution profiling and analysis of viral and host small RNAs during human cytomegalovirus infection. J Virol 86:226–235 [View Article][PubMed]
    [Google Scholar]
  48. Su H., Trombly M. I., Chen J., Wang X. 2009; Essential and overlapping functions for mammalian Argonautes in microRNA silencing. Genes Dev 23:304–317 [View Article][PubMed]
    [Google Scholar]
  49. Tomari Y., Du T., Zamore P. D. 2007; Sorting of Drosophila small silencing RNAs. Cell 130:299–308 [View Article][PubMed]
    [Google Scholar]
  50. Triboulet R., Mari B., Lin Y.-L., Chable-Bessia C., Bennasser Y., Lebrigand K., Cardinaud B., Maurin T., Barbry P. other authors 2007; Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315:1579–1582 [View Article][PubMed]
    [Google Scholar]
  51. Tuddenham L., Pfeffer S. 2011; Roles and regulation of microRNAs in cytomegalovirus infection. Biochim Biophys Acta 1809:613–622[PubMed] [CrossRef]
    [Google Scholar]
  52. Umbach J. L., Cullen B. R. 2010; In-depth analysis of Kaposi’s sarcoma-associated herpesvirus microRNA expression provides insights into the mammalian microRNA-processing machinery. J Virol 84:695–703 [View Article][PubMed]
    [Google Scholar]
  53. Wagner M., Jonjic S., Koszinowski U. H., Messerle M. 1999; Systematic excision of vector sequences from the BAC-cloned herpesvirus genome during virus reconstitution. J Virol 73:7056–7060[PubMed]
    [Google Scholar]
  54. Wang F.-Z., Weber F., Croce C., Liu C.-G., Liao X., Pellett P. E. 2008; Human cytomegalovirus infection alters the expression of cellular microRNA species that affect its replication. J Virol 82:9065–9074 [View Article][PubMed]
    [Google Scholar]
  55. Wang B., Li S., Qi H. H., Chowdhury D., Shi Y., Novina C. D. 2009a; Distinct passenger strand and mRNA cleavage activities of human Argonaute proteins. Nat Struct Mol Biol 16:1259–1266 [View Article][PubMed]
    [Google Scholar]
  56. Wang X., Wang H.-K., McCoy J. P., Banerjee N. S., Rader J. S., Broker T. R., Meyers C., Chow L. T., Zheng Z.-M. 2009b; Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA 15:637–647 [View Article][PubMed]
    [Google Scholar]
  57. Wu D.-G., Wang Y.-Y., Fan L.-G., Luo H., Han B., Sun L.-H., Wang X.-F., Zhang J.-X., Cao L. other authors 2011; MicroRNA-7 regulates glioblastoma cell invasion via targeting focal adhesion kinase expression. Chin Med J (Engl) 124:2616–2621[PubMed]
    [Google Scholar]
  58. Xiong S., Zheng Y., Jiang P., Liu R., Liu X., Chu Y. 2011; MicroRNA-7 inhibits the growth of human non-small cell lung cancer A549 cells through targeting BCL-2. Int J Biol Sci 7:805–814 [View Article][PubMed]
    [Google Scholar]
  59. Xu N., Segerman B., Zhou X., Akusjärvi G. 2007; Adenovirus virus-associated RNAII-derived small RNAs are efficiently incorporated into the RNA-induced silencing complex and associate with polyribosomes. J Virol 81:10540–10549 [View Article][PubMed]
    [Google Scholar]
  60. Zhu J. Y., Strehle M., Frohn A., Kremmer E., Höfig K. P., Meister G., Adler H. 2010; Identification and analysis of expression of novel microRNAs of murine gammaherpesvirus 68. J Virol 84:10266–10275 [View Article][PubMed]
    [Google Scholar]
  61. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.041822-0
Loading
/content/journal/jgv/10.1099/vir.0.041822-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed