1887

Abstract

Potato spindle tuber viroid (PSTVd) is a small, single-stranded, circular, non-coding RNA pathogen. Host DNA-dependent RNA polymerase II (RNAP II) was proposed to be critical for its replication, but no interaction site for RNAP II on the PSTVd RNA genome was identified. Using a co-immunoprecipitation strategy involving a mAb specific for the conserved heptapeptide (i.e. YSPTSPS) located at the carboxy-terminal domain of the largest subunit of RNAP II, we established the interaction of tomato RNAP II with PSTVd RNA and showed that RNAP II associates with the left terminal domain of PSTVd (+) RNA. RNAP II did not interact with any of several PSTVd (−) RNAs tested. Deletion and site-directed mutagenesis of a shortened model PSTVd (+) RNA fragment were used to identify the role of specific nucleotides and structural motifs in this interaction. Our results provide evidence for the interaction of a RNAP II complex from a natural host with the rod-like conformation of the left terminal domain of PSTVd (+) RNA.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.041574-0
2012-07-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/7/1591.html?itemId=/content/journal/jgv/10.1099/vir.0.041574-0&mimeType=html&fmt=ahah

References

  1. Abrahem A., Pelchat M.. ( 2008;). Formation of an RNA polymerase II preinitiation complex on an RNA promoter derived from the hepatitis delta virus RNA genome. . Nucleic Acids Res 36:, 5201–5211. [CrossRef][PubMed]
    [Google Scholar]
  2. Baumstark T., Schröder A. R., Riesner D.. ( 1997;). Viroid processing: switch from cleavage to ligation is driven by a change from a tetraloop to a loop E conformation. . EMBO J 16:, 599–610. [CrossRef][PubMed]
    [Google Scholar]
  3. Bonfiglioli R. D., McFadden G. I., Symons R. H.. ( 1994;). In situ hybridization localizes avocado sunblotch viroid on chloroplast thylakoid membranes and coconut cadang cadang viroid in the nucleus. . Plant J 6:, 99–103. [CrossRef]
    [Google Scholar]
  4. Bonfiglioli R. D., Webb D. R., Symons R. H.. ( 1996;). Tissue and intra-cellular distribution of coconut cadang cadang viroid and citrus exocortis viroid determined by in situ hybridization and confocal laser scanning and transmission electron microscopy. . Plant J 9:, 457–465. [CrossRef]
    [Google Scholar]
  5. Branch A. D., Robertson H. D.. ( 1984;). A replication cycle for viroids and other small infectious RNA’s. . Science 223:, 450–455. [CrossRef][PubMed]
    [Google Scholar]
  6. Bregman D. B., Du L., van der Zee S., Warren S. L.. ( 1995;). Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains. . J Cell Biol 129:, 287–298. [CrossRef][PubMed]
    [Google Scholar]
  7. de Mercoyrol L., Job C., Job D.. ( 1989;). Studies on the inhibition by α-amanitin of single-step addition reactions and productive RNA synthesis catalysed by wheat-germ RNA polymerase II. . Biochem J 258:, 165–169.[PubMed]
    [Google Scholar]
  8. Ding B.. ( 2010;). Viroids: self-replicating, mobile, and fast-evolving noncoding regulatory RNAs. . WIREs RNA 1:, 362–375. [CrossRef]
    [Google Scholar]
  9. Dingley A. J., Steger G., Esters B., Riesner D., Grzesiek S.. ( 2003;). Structural characterization of the 69 nucleotide potato spindle tuber viroid left-terminal domain by NMR and thermodynamic analysis. . J Mol Biol 334:, 751–767. [CrossRef][PubMed]
    [Google Scholar]
  10. Filipovska J., Konarska M. M.. ( 2000;). Specific HDV RNA-templated transcription by pol II in vitro. . RNA 6:, 41–54. [CrossRef][PubMed]
    [Google Scholar]
  11. Flores R.. ( 1989;). Synthesis of RNAs specific to citrus exocortis viroid by a fraction rich in nuclei from infected Gynura aurantiaca: examination of the nature of the products and solubilization of the polymerase-template complex. . J Gen Virol 70:, 2695–2706. [CrossRef]
    [Google Scholar]
  12. Flores R., Semancik J. S.. ( 1982;). Properties of a cell-free system for synthesis of citrus exocortis viroid. . Proc Natl Acad Sci U S A 79:, 6285–6288. [CrossRef][PubMed]
    [Google Scholar]
  13. Flores R., Hernández C., Martínez de Alba A. E., Daròs J. A., Di Serio F.. ( 2005;). Viroids and viroid–host interactions. . Annu Rev Phytopathol 43:, 117–139. [CrossRef][PubMed]
    [Google Scholar]
  14. Flores R., Grubb D., Elleuch A., Nohales M. A., Delgado S., Gago S.. ( 2011;). Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: variations on a theme. . RNA Biol 8:, 200–206. [CrossRef][PubMed]
    [Google Scholar]
  15. Gast F. U.. ( 2003;). A new structural motif in the left terminal domain of large viroids identified by covariation analysis. . Virus Genes 26:, 19–23. [CrossRef][PubMed]
    [Google Scholar]
  16. Gast F. U., Kempe D., Spieker R. L., Sänger H. L.. ( 1996;). Secondary structure probing of potato spindle tuber viroid (PSTVd) and sequence comparison with other small pathogenic RNA replicons provides evidence for central non-canonical base-pairs, large A-rich loops, and a terminal branch. . J Mol Biol 262:, 652–670. [CrossRef][PubMed]
    [Google Scholar]
  17. Goodman T. C., Nagel L., Rappold W., Klotz G., Riesner D.. ( 1984;). Viroid replication: equilibrium association constant and comparative activity measurements for the viroid–polymerase interaction. . Nucleic Acids Res 12:, 6231–6246. [CrossRef][PubMed]
    [Google Scholar]
  18. Greco-Stewart V. S., Miron P., Abrahem A., Pelchat M.. ( 2007;). The human RNA polymerase II interacts with the terminal stem-loop regions of the hepatitis delta virus RNA genome. . Virology 357:, 68–78. [CrossRef][PubMed]
    [Google Scholar]
  19. Hammond R. W.. ( 1994;). Agrobacterium-mediated inoculation of PSTVd cDNAs onto tomato reveals the biological effect of apparently lethal mutations. . Virology 201:, 36–45. [CrossRef][PubMed]
    [Google Scholar]
  20. Hammond R. W., Owens R. A.. ( 1987;). Mutational analysis of potato spindle tuber viroid reveals complex relationships between structure and infectivity. . Proc Natl Acad Sci U S A 84:, 3967–3971. [CrossRef][PubMed]
    [Google Scholar]
  21. Harders J., Lukács N., Robert-Nicoud M., Jovin T. M., Riesner D.. ( 1989;). Imaging of viroids in nuclei from tomato leaf tissue by in situ hybridization and confocal laser scanning microscopy. . EMBO J 8:, 3941–3949.[PubMed]
    [Google Scholar]
  22. Hofacker I. L.. ( 2003;). Vienna RNA secondary structure server. . Nucleic Acids Res 31:, 3429–3431. [CrossRef][PubMed]
    [Google Scholar]
  23. Hu Y., Feldstein P. A., Hammond J., Hammond R. W., Bottino P. J., Owens R. A.. ( 1997;). Destabilization of potato spindle tuber viroid by mutations in the left terminal loop. . J Gen Virol 78:, 1199–1206.[PubMed]
    [Google Scholar]
  24. Keese P., Symons R. H.. ( 1985;). Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. . Proc Natl Acad Sci U S A 82:, 4582–4586. [CrossRef][PubMed]
    [Google Scholar]
  25. Kolonko N., Bannach O., Aschermann K., Hu K. H., Moors M., Schmitz M., Steger G., Riesner D.. ( 2006;). Transcription of potato spindle tuber viroid by RNA polymerase II starts in the left terminal loop. . Virology 347:, 392–404. [CrossRef][PubMed]
    [Google Scholar]
  26. Lakshman D. K., Tavantzis S. M.. ( 1993;). Primary and secondary structure of a 360-nucleotide isolate of potato spindle tuber viroid. . Arch Virol 128:, 319–331. [CrossRef][PubMed]
    [Google Scholar]
  27. Mühlbach H. P., Sänger H. L.. ( 1979;). Viroid replication is inhibited by α-amanitin. . Nature 278:, 185–188. [CrossRef][PubMed]
    [Google Scholar]
  28. Owens R. A., Thompson S. M.. ( 2005;). Mutational analysis does not support the existence of a putative tertiary structural element in the left terminal domain of Potato spindle tuber viroid. . J Gen Virol 86:, 1835–1839. [CrossRef][PubMed]
    [Google Scholar]
  29. Palancade B., Bensaude O.. ( 2003;). Investigating RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation. . Eur J Biochem 270:, 3859–3870. [CrossRef][PubMed]
    [Google Scholar]
  30. Pelchat M., Perreault J. P.. ( 2004;). Binding site of Escherichia coli RNA polymerase to an RNA promoter. . Biochem Biophys Res Commun 319:, 636–642. [CrossRef][PubMed]
    [Google Scholar]
  31. Pelchat M., Grenier C., Perreault J. P.. ( 2002;). Characterization of a viroid-derived RNA promoter for the DNA-dependent RNA polymerase from Escherichia coli. . Biochemistry 41:, 6561–6571. [CrossRef][PubMed]
    [Google Scholar]
  32. Qi Y., Ding B.. ( 2003;). Differential subnuclear localization of RNA strands of opposite polarity derived from an autonomously replicating viroid. . Plant Cell 15:, 2566–2577. [CrossRef][PubMed]
    [Google Scholar]
  33. Rackwitz H. R., Rohde W., Sänger H. L.. ( 1981;). DNA-dependent RNA polymerase II of plant origin transcribes viroid RNA into full-length copies. . Nature 291:, 297–301. [CrossRef][PubMed]
    [Google Scholar]
  34. Rakowski A. G., Symons R. H.. ( 1994;). Infectivity of linear monomeric transcripts of citrus exocortis viroid: terminal sequence requirements for processing. . Virology 203:, 328–335. [CrossRef][PubMed]
    [Google Scholar]
  35. Rivera-Bustamante R. F., Semancik J. S.. ( 1989;). Properties of a viroid-replicating complex solubilized from nuclei. . J Gen Virol 70:, 2707–2716. [CrossRef]
    [Google Scholar]
  36. Rocheleau L., Pelchat M.. ( 2006;). The Subviral RNA Database: a toolbox for viroids, the hepatitis delta virus and satellite RNAs research. . BMC Microbiol 6:, 24. [CrossRef][PubMed]
    [Google Scholar]
  37. Schindler I. M., Muhlbach H. P.. ( 1992;). Involvement of nuclear DNA-dependent RNA polymerases in potato spindle tuber viroid replication: a reevaluation. . Plant Sci 84:, 221–229. [CrossRef]
    [Google Scholar]
  38. Schrader O., Baumstark T., Riesner D.. ( 2003;). A mini-RNA containing the tetraloop, wobble-pair and loop E motifs of the central conserved region of potato spindle tuber viroid is processed into a minicircle. . Nucleic Acids Res 31:, 988–998. [CrossRef][PubMed]
    [Google Scholar]
  39. Schumacher J., Sänger H. L., Riesner D.. ( 1983;). Subcellular localization of viroids in highly purified nuclei from tomato leaf tissue. . EMBO J 2:, 1549–1555.[PubMed]
    [Google Scholar]
  40. Semancik J. S., Harper K. L.. ( 1984;). Optimal conditions for cell-free synthesis of citrus exocortis viroid and the question of specificity of RNA polymerase activity. . Proc Natl Acad Sci U S A 81:, 4429–4433. [CrossRef][PubMed]
    [Google Scholar]
  41. Smale S. T., Kadonaga J. T.. ( 2003;). The RNA polymerase II core promoter. . Annu Rev Biochem 72:, 449–479. [CrossRef][PubMed]
    [Google Scholar]
  42. Taylor J., Pelchat M.. ( 2010;). Origin of hepatitis delta virus. . Future Microbiol 5:, 393–402. [CrossRef][PubMed]
    [Google Scholar]
  43. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  44. Tsagris E. M., Martínez de Alba A. E., Gozmanova M., Kalantidis K.. ( 2008;). Viroids. . Cell Microbiol 10:, 2168–2179. [CrossRef][PubMed]
    [Google Scholar]
  45. Warrilow D., Symons R. H.. ( 1999;). Citrus exocortis viroid RNA is associated with the largest subunit of RNA polymerase II in tomato in vivo. . Arch Virol 144:, 2367–2375. [CrossRef][PubMed]
    [Google Scholar]
  46. Wiesyk A., Candresse T., Zagórski W., Góra-Sochacka A.. ( 2011;). Use of randomly mutagenized genomic cDNA banks of potato spindle tuber viroid to screen for viable versions of the viroid genome. . J Gen Virol 92:, 457–466. [CrossRef][PubMed]
    [Google Scholar]
  47. Yoshikawa N., Takahashi T.. ( 1986;). Inhibition of hop stunt viroid replication by α-amanitin. . Z Pflanzenkr Pflanzenschutz 93:, 62–71.
    [Google Scholar]
  48. Zhong X., Archual A. J., Amin A. A., Ding B.. ( 2008;). A genomic map of viroid RNA motifs critical for replication and systemic trafficking. . Plant Cell 20:, 35–47. [CrossRef][PubMed]
    [Google Scholar]
  49. Zuker M.. ( 2003;). Mfold web server for nucleic acid folding and hybridization prediction. . Nucleic Acids Res 31:, 3406–3415. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.041574-0
Loading
/content/journal/jgv/10.1099/vir.0.041574-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error