1887

Abstract

We characterized low pathogenic avian influenza (LPAI) viruses of the H7 subtype that were isolated from domestic ducks and wild birds in South Korea from 2008 to 2011. A total of 20 H7 viruses were collected from live-bird markets (LBMs), duck farms and wild-bird habitats using avian influenza (AI) surveillance and epidemiological approaches. A phylogenetic analysis of the H7 viruses that were isolated from domestic ducks and wild birds demonstrated that they were separated into 12 genotypes (A–D and Wb-1–8, respectively), indicating genetic diversity. These H7 viruses were related to the recently isolated Eurasian LPAI H7 viruses and various influenza viruses that are circulating in Asia, including southern China and South Korea. The same genotype was not found between domestic poultry and wild-bird isolates; however, most of the H7 viruses in poultry (genotypes B and C) were closely related to the H7 virus isolated from a wild bird (genotype Wb-3). Animal-challenge studies revealed that certain H7 AI viruses replicated well only in chickens or ducks depending on the genotype, indicating that the pathogenicity of H7 viruses has the potential to be altered due to multiple reassortments, and these viruses can potentially expand their host range. Our results are evidence of abundant and frequent reassortment between H7 viruses in poultry and wild birds and emphasize the continuing need to monitor the evolutionary genetics of the influenza virus in poultry and wild birds.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.041269-0
2012-06-01
2020-08-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/6/1278.html?itemId=/content/journal/jgv/10.1099/vir.0.041269-0&mimeType=html&fmt=ahah

References

  1. Banks J., Speidel E. S., Moore E., Plowright L., Piccirillo A., Capua I., Cordioli P., Fioretti A., Alexander D. J.. 2001; Changes in the haemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy. Arch Virol146:963–973 [CrossRef][PubMed]
    [Google Scholar]
  2. Campitelli L., Mogavero E., De Marco M. A., Delogu M., Puzelli S., Frezza F., Facchini M., Chiapponi C., Foni E.. other authors 2004; Interspecies transmission of an H7N3 influenza virus from wild birds to intensively reared domestic poultry in Italy. Virology323:24–36 [CrossRef][PubMed]
    [Google Scholar]
  3. Campitelli L., Di Martino A., Spagnolo D., Smith G. J., Di Trani L., Facchini M., De Marco M. A., Foni E., Chiapponi C.. other authors 2008; Molecular analysis of avian H7 influenza viruses circulating in Eurasia in 1999-2005: detection of multiple reassortant virus genotypes. J Gen Virol89:48–59 [CrossRef][PubMed]
    [Google Scholar]
  4. Fereidouni S. R., Starick E., Grund C., Globig A., Mettenleiter T. C., Beer M., Harder T.. 2009; Rapid molecular subtyping by reverse transcription polymerase chain reaction of the neuraminidase gene of avian influenza A viruses. Vet Microbiol135:253–260 [CrossRef][PubMed]
    [Google Scholar]
  5. Fouchier R. A., Bestebroer T. M., Herfst S., Van Der Kemp L., Rimmelzwaan G. F., Osterhaus A. D.. 2000; Detection of influenza A viruses from different species by PCR amplification of conserved sequences in the matrix gene. J Clin Microbiol38:4096–4101[PubMed]
    [Google Scholar]
  6. Hirst M., Astell C. R., Griffith M., Coughlin S. M., Moksa M., Zeng T., Smailus D. E., Holt R. A., Jones S.. other authors 2004; Novel avian influenza H7N3 strain outbreak, British Columbia. Emerg Infect Dis10:2192–2195[PubMed][CrossRef]
    [Google Scholar]
  7. Horimoto T., Kawaoka Y.. 1995; Molecular changes in virulent mutants arising from avirulent avian influenza viruses during replication in 14-day-old embryonated eggs. Virology206:755–759 [CrossRef][PubMed]
    [Google Scholar]
  8. Kim M. C., Jeong O. M., Kang H. M., Paek M. R., Kwon J. S., Song C. S., Kwon Y. K., Lee J. G., Kwon J. H., Lee Y. J.. 2010; Pathogenicity and transmission studies of H7N7 avian influenza virus isolated from feces of magpie origin in chickens and magpie. Vet Microbiol141:268–274 [CrossRef][PubMed]
    [Google Scholar]
  9. Lee M. S., Chang P. C., Shien J. H., Cheng M. C., Shieh H. K.. 2001; Identification and subtyping of avian influenza viruses by reverse transcription-PCR. J Virol Methods97:13–22 [CrossRef][PubMed]
    [Google Scholar]
  10. Lee C. W., Swayne D. E., Linares J. A., Senne D. A., Suarez D. L.. 2005; H5N2 avian influenza outbreak in Texas in 2004: the first highly pathogenic strain in the United States in 20 years?. J Virol79:11412–11421 [CrossRef][PubMed]
    [Google Scholar]
  11. Li K. S., Xu K. M., Peiris J. S., Poon L. L., Yu K. Z., Yuen K. Y., Shortridge K. F., Webster R. G., Guan Y.. 2003; Characterization of H9 subtype influenza viruses from the ducks of southern China: a candidate for the next influenza pandemic in humans?. J Virol77:6988–6994 [CrossRef][PubMed]
    [Google Scholar]
  12. Munch M., Nielsen L. P., Handberg K. J., Jørgensen P. H.. 2001; Detection and subtyping (H5 and H7) of avian type A influenza virus by reverse transcription-PCR and PCR-ELISA. Arch Virol146:87–97 [CrossRef][PubMed]
    [Google Scholar]
  13. Munster V. J., Wallensten A., Baas C., Rimmelzwaan G. F., Schutten M., Olsen B., Osterhaus A. D., Fouchier R. A.. 2005; Mallards and highly pathogenic avian influenza ancestral viruses, northern Europe. Emerg Infect Dis11:1545–1551 [CrossRef][PubMed]
    [Google Scholar]
  14. Palmer D. F., Coleman W. R., Dowdle W. R., Schild G. C.. 1975; Advanced Laboratory Techniques for Influenza Diagnosis Washington, DC, USA: Department of Health, Education and Welfare;
    [Google Scholar]
  15. Reed L., Muench H.. 1938; A simple method of estimating fifty percent endpoints. Am J Epidemiol27:493
    [Google Scholar]
  16. Song M. S., Oh T. K., Moon H. J., Yoo D. W., Lee E. H., Lee J. S., Kim C. J., Yoo G. J., Kim H., Choi Y. K.. 2008; Ecology of H3 avian influenza viruses in Korea and assessment of their pathogenic potentials. J Gen Virol89:949–957 [CrossRef][PubMed]
    [Google Scholar]
  17. Suarez D. L., Senne D. A., Banks J., Brown I. H., Essen S. C., Lee C. W., Manvell R. J., Mathieu-Benson C., Moreno V.. other authors 2004; Recombination resulting in virulence shift in avian influenza outbreak, Chile. Emerg Infect Dis10:693–699[PubMed][CrossRef]
    [Google Scholar]
  18. Sugiura K., Fushimi K., Takehisa T., Miwa M., Saito T., Uchida Y., Onodera T.. 2009; An outbreak of H7N6 low pathogenic avian influenza in quails in Japan. Vet Ital45:481–489[PubMed]
    [Google Scholar]
  19. Swayne D. E.. 2008; The global nature of avian influenza. In Avian Influenza pp.123–143 Edited by Swayne D. E.. Ames, Iowa, USA: Blackwell Publishers; [CrossRef]
    [Google Scholar]
  20. Swayne D. E., Halvorson D. A.. 2003; Influenza. In Disease of poultry pp.135–160 Edited by Saif Y. M., Barnes H. J., Glisom J. R., Fadly A. M., McDougald L. R., Swayne D. E.. Ames, Iowa: Iowa State University Press;
    [Google Scholar]
  21. Tamura K., Dudley J., Nei M., Kumar S.. 2007; mega4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  22. Wood G. W., Parsons G., Alexander D. J.. 1995; Replication of influenza A viruses of high and low pathogenicity for chickens at different sites in chickens and ducks following intranasal inoculation. Avian Pathol24:545–551 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.041269-0
Loading
/content/journal/jgv/10.1099/vir.0.041269-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error