1887

Abstract

Although the T-cell-mediated immune response to influenza virus has been studied extensively, little information is available on the direct interaction between influenza virus and T-cells that pertains to severe diseases in humans and animals. To address these issues, we utilized the BALB/c mouse model combined with primary T-cells infected with A/WSN/33 influenza virus to investigate whether influenza virus has an affinity for T-cells . We observed that small proportions of CD4 T-cells and CD8 T-cells in spleen and thymus expressed viral proteins in infected mice. A significant proportion of mouse primary T-cells displayed expression of α-2,6 sialic acid-linked influenza virus receptor and were infected directly by influenza A virus. These experiments reveal that there exists a population of T-cells that is susceptible to influenza A virus infection. Furthermore, we employed human Jurkat T-cells to investigate the virus–T-cell interaction, with particular emphasis on understanding whether Itk (interleukin-2-inducible T-cell kinase), a Tec family tyrosine kinase that regulates T-cell activation, is involved in virus infection of T-cells. Interestingly, influenza virus infection resulted in an increased recruitment of Itk to the plasma membrane and an increased level of phospholipase C-γ1 (PLC-γ1) phosphorylation, suggesting that Itk/PLC-γ1 signalling is activated by the virus infection. We demonstrated that depletion of Itk inhibited the replication of influenza A virus, whereas overexpression of Itk increased virus replication. These results indicate that Itk is required for efficient replication of influenza virus in infected T-cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.041228-0
2012-05-01
2021-01-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/5/987.html?itemId=/content/journal/jgv/10.1099/vir.0.041228-0&mimeType=html&fmt=ahah

References

  1. Andreotti A. H., Schwartzberg P. L., Joseph R. E., Berg L. J. 2010; T-cell signaling regulated by the Tec family kinase, Itk. Cold Spring Harb Perspect Biol 2:a002287 [CrossRef][PubMed]
    [Google Scholar]
  2. August A., Sadra A., Dupont B., Hanafusa H. 1997; Src-induced activation of inducible T cell kinase (ITK) requires phosphatidylinositol 3-kinase activity and the Pleckstrin homology domain of inducible T cell kinase. Proc Natl Acad Sci U S A 94:11227–11232 [CrossRef][PubMed]
    [Google Scholar]
  3. Berg L. J., Finkelstein L. D., Lucas J. A., Schwartzberg P. L. 2005; Tec family kinases in T lymphocyte development and function. Annu Rev Immunol 23:549–600 [CrossRef][PubMed]
    [Google Scholar]
  4. Bogin Y., Ainey C., Beach D., Yablonski D. 2007; SLP-76 mediates and maintains activation of the Tec family kinase ITK via the T cell antigen receptor-induced association between SLP-76 and ITK. Proc Natl Acad Sci U S A 104:6638–6643 [CrossRef][PubMed]
    [Google Scholar]
  5. Bunnell S. C., Diehn M., Yaffe M. B., Findell P. R., Cantley L. C., Berg L. J. 2000; Biochemical interactions integrating Itk with the T cell receptor-initiated signaling cascade. J Biol Chem 275:2219–2230 [CrossRef][PubMed]
    [Google Scholar]
  6. Chen H., Deng G., Li Z., Tian G., Li Y., Jiao P., Zhang L., Liu Z., Webster R. G., Yu K. 2004; The evolution of H5N1 influenza viruses in ducks in southern China. Proc Natl Acad Sci U S A 101:10452–10457 [CrossRef][PubMed]
    [Google Scholar]
  7. Chen J. L., Fucini R. V., Lacomis L., Erdjument-Bromage H., Tempst P., Stamnes M. 2005; Coatomer-bound Cdc42 regulates dynein recruitment to COPI vesicles. J Cell Biol 169:383–389 [CrossRef][PubMed]
    [Google Scholar]
  8. Ching K. A., Kawakami Y., Kawakami T., Tsoukas C. D. 1999; Emt/Itk associates with activated TCR complexes: role of the pleckstrin homology domain. J Immunol 163:6006–6013[PubMed]
    [Google Scholar]
  9. Dombroski D., Houghtling R. A., Labno C. M., Precht P., Takesono A., Caplen N. J., Billadeau D. D., Wange R. L., Burkhardt J. K., Schwartzberg P. L. 2005; Kinase-independent functions for Itk in TCR-induced regulation of Vav and the actin cytoskeleton. J Immunol 174:1385–1392[PubMed] [CrossRef]
    [Google Scholar]
  10. Felices M., Falk M., Kosaka Y., Berg L. J. 2007; Tec kinases in T cell and mast cell signaling. Adv Immunol 93:145–184 [CrossRef][PubMed]
    [Google Scholar]
  11. Fornek J. L., Gillim-Ross L., Santos C., Carter V., Ward J. M., Cheng L. I., Proll S., Katze M. G., Subbarao K. 2009; A single-amino-acid substitution in a polymerase protein of an H5N1 influenza virus is associated with systemic infection and impaired T-cell activation in mice. J Virol 83:11102–11115 [CrossRef][PubMed]
    [Google Scholar]
  12. Ge X., Tan V., Bollyky P. L., Standifer N. E., James E. A., Kwok W. W. 2010; Assessment of seasonal influenza A virus-specific CD4 T-cell responses to 2009 pandemic H1N1 swine-origin influenza A virus. J Virol 84:3312–3319 [CrossRef][PubMed]
    [Google Scholar]
  13. Grasis J. A., Guimond D. M., Cam N. R., Herman K., Magotti P., Lambris J. D., Tsoukas C. D. 2010; In vivo significance of ITK–SLP-76 interaction in cytokine production. Mol Cell Biol 30:3596–3609 [CrossRef][PubMed]
    [Google Scholar]
  14. Guo G., Qiu X., Wang S., Chen Y., Rothman P. B., Wang Z., Chen Y., Wang G., Chen J. L. 2010; Oncogenic E17K mutation in the pleckstrin homology domain of AKT1 promotes v-Abl-mediated pre-B-cell transformation and survival of Pim-deficient cells. Oncogene 29:3845–3853 [CrossRef][PubMed]
    [Google Scholar]
  15. Hatta Y., Hershberger K., Shinya K., Proll S. C., Dubielzig R. R., Hatta M., Katze M. G., Kawaoka Y., Suresh M. 2010; Viral replication rate regulates clinical outcome and CD8 T cell responses during highly pathogenic H5N1 influenza virus infection in mice. PLoS Pathog 6:e1001139 [CrossRef][PubMed]
    [Google Scholar]
  16. Hehnly H., Longhini K. M., Chen J. L., Stamnes M. 2009; Retrograde Shiga toxin trafficking is regulated by ARHGAP21 and Cdc42. Mol Biol Cell 20:4303–4312 [CrossRef][PubMed]
    [Google Scholar]
  17. Hinshaw V. S., Olsen C. W., Dybdahl-Sissoko N., Evans D. 1994; Apoptosis: a mechanism of cell killing by influenza A and B viruses. J Virol 68:3667–3673[PubMed]
    [Google Scholar]
  18. Hogan P. G., Chen L., Nardone J., Rao A. 2003; Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17:2205–2232 [CrossRef][PubMed]
    [Google Scholar]
  19. Johnson B. J., Costelloe E. O., Fitzpatrick D. R., Haanen J. B., Schumacher T. N., Brown L. E., Kelso A. 2003; Single-cell perforin and granzyme expression reveals the anatomical localization of effector CD8+ T cells in influenza virus-infected mice. Proc Natl Acad Sci U S A 100:2657–2662 [CrossRef][PubMed]
    [Google Scholar]
  20. Li Q., Qi J., Zhang W., Vavricka C. J., Shi Y., Wei J., Feng E., Shen J., Chen J. other authors 2010; The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site. Nat Struct Mol Biol 17:1266–1268 [CrossRef][PubMed]
    [Google Scholar]
  21. Manicassamy B., Manicassamy S., Belicha-Villanueva A., Pisanelli G., Pulendran B., García-Sastre A. 2010; Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proc Natl Acad Sci U S A 107:11531–11536 [CrossRef][PubMed]
    [Google Scholar]
  22. Miao H., Hollenbaugh J. A., Zand M. S., Holden-Wiltse J., Mosmann T. R., Perelson A. S., Wu H., Topham D. J. 2010; Quantifying the early immune response and adaptive immune response kinetics in mice infected with influenza A virus. J Virol 84:6687–6698 [CrossRef][PubMed]
    [Google Scholar]
  23. Mori I., Komatsu T., Takeuchi K., Nakakuki K., Sudo M., Kimura Y. 1995; In vivo induction of apoptosis by influenza virus. J Gen Virol 76:2869–2873 [CrossRef][PubMed]
    [Google Scholar]
  24. Nishiumi S., Ashida H. 2007; Rapid preparation of a plasma membrane fraction from adipocytes and muscle cells: application to detection of translocated glucose transporter 4 on the plasma membrane. Biosci Biotechnol Biochem 71:2343–2346 [CrossRef][PubMed]
    [Google Scholar]
  25. Qi Q., August A. 2007; Keeping the (kinase) party going: SLP-76 and ITK dance to the beat. Sci STKE 2007:pe39 [CrossRef][PubMed]
    [Google Scholar]
  26. Readinger J. A., Schiralli G. M., Jiang J. K., Thomas C. J., August A., Henderson A. J., Schwartzberg P. L. 2008; Selective targeting of ITK blocks multiple steps of HIV replication. Proc Natl Acad Sci U S A 105:6684–6689 [CrossRef][PubMed]
    [Google Scholar]
  27. Readinger J. A., Mueller K. L., Venegas A. M., Horai R., Schwartzberg P. L. 2009; Tec kinases regulate T-lymphocyte development and function: new insights into the roles of Itk and Rlk/Txk. Immunol Rev 228:93–114 [CrossRef][PubMed]
    [Google Scholar]
  28. Reed L. J., Muench H. 1938; A simple method of estimating fifty per cent endpoints. Am J Hyg 27:493–497
    [Google Scholar]
  29. Schwartzberg P. L., Finkelstein L. D., Readinger J. A. 2005; TEC-family kinases: regulators of T-helper-cell differentiation. Nat Rev Immunol 5:284–295 [CrossRef][PubMed]
    [Google Scholar]
  30. Serrano C. J., Graham L., DeBell K., Rawat R., Veri M. C., Bonvini E., Rellahan B. L., Reischl I. G. 2005; A new tyrosine phosphorylation site in PLC gamma 1: the role of tyrosine 775 in immune receptor signaling. J Immunol 174:6233–6237[PubMed] [CrossRef]
    [Google Scholar]
  31. Siliciano J. D., Morrow T. A., Desiderio S. V. 1992; itk, a T-cell-specific tyrosine kinase gene inducible by interleukin 2. Proc Natl Acad Sci U S A 89:11194–11198 [CrossRef][PubMed]
    [Google Scholar]
  32. Smith C. I., Islam T. C., Mattsson P. T., Mohamed A. J., Nore B. F., Vihinen M. 2001; The Tec family of cytoplasmic tyrosine kinases: mammalian Btk, Bmx, Itk, Tec, Txk and homologs in other species. Bioessays 23:436–446 [CrossRef][PubMed]
    [Google Scholar]
  33. Tscherne D. M., García-Sastre A. 2011; Virulence determinants of pandemic influenza viruses. J Clin Invest 121:6–13 [CrossRef][PubMed]
    [Google Scholar]
  34. Tumpey T. M., Lu X., Morken T., Zaki S. R., Katz J. M. 2000; Depletion of lymphocytes and diminished cytokine production in mice infected with a highly virulent influenza A (H5N1) virus isolated from humans. J Virol 74:6105–6116 [CrossRef][PubMed]
    [Google Scholar]
  35. Van Campen H., Easterday B. C., Hinshaw V. S. 1989; Destruction of lymphocytes by a virulent avian influenza A virus. J Gen Virol 70:467–472 [CrossRef][PubMed]
    [Google Scholar]
  36. Wang Z., Liu X., Zhao Z., Xu C., Zhang K., Chen C., Sun L., Gao G. F., Ye X., Liu W. 2011; Cyclophilin E functions as a negative regulator to influenza virus replication by impairing the formation of the viral ribonucleoprotein complex. PLoS One 6:e22625 [CrossRef][PubMed]
    [Google Scholar]
  37. Wu C., Zanker D., Valkenburg S., Tan B., Kedzierska K., Zou Q. M., Doherty P. C., Chen W. 2011; Systematic identification of immunodominant CD8+ T-cell responses to influenza A virus in HLA-A2 individuals. Proc Natl Acad Sci U S A 108:9178–9183 [CrossRef][PubMed]
    [Google Scholar]
  38. Yuen K. Y., Chan P. K., Peiris M., Tsang D. N., Que T. L., Shortridge K. F., Cheung P. T., To W. K., Ho E. T. other authors 1998; Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet 351:467–471 [CrossRef][PubMed]
    [Google Scholar]
  39. Zammit D. J., Turner D. L., Klonowski K. D., Lefrançois L., Cauley L. S. 2006; Residual antigen presentation after influenza virus infection affects CD8 T cell activation and migration. Immunity 24:439–449 [CrossRef][PubMed]
    [Google Scholar]
  40. Zhang J., Li G., Liu X., Wang Z., Liu W., Ye X. 2009; Influenza A virus M1 blocks the classical complement pathway through interacting with C1qA. J Gen Virol 90:2751–2758 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.041228-0
Loading
/content/journal/jgv/10.1099/vir.0.041228-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error