1887

Abstract

Despite the success of highly active antiretroviral therapy in combating human immunodeficiency virus type 1 (HIV-1) infection, the virus still persists in viral reservoirs, often in a state of transcriptional silence. This review focuses on the HIV-1 protein and regulatory machinery and how expanding knowledge of the function of individual HIV-1-coded proteins has provided valuable insights into understanding HIV transcriptional regulation in selected susceptible cell types. Historically, Tat has been the most studied primary transactivator protein, but emerging knowledge of HIV-1 transcriptional regulation in cells of the monocyte–macrophage lineage has more recently established that a number of the HIV-1 accessory proteins like Vpr may directly or indirectly regulate the transcriptional process. The viral proteins Nef and matrix play important roles in modulating the cellular activation pathways to facilitate viral replication. These observations highlight the cross talk between the HIV-1 transcriptional machinery and cellular activation pathways. The review also discusses the proposed transcriptional regulation mechanisms that intersect with the pathways regulated by microRNAs and how development of the knowledge of chromatin biology has enhanced our understanding of key protein–protein and protein–DNA interactions that form the HIV-1 transcriptome. Finally, we discuss the potential pharmacological approaches to target viral persistence and enhance effective transcription to purge the virus in cellular reservoirs, especially within the central nervous system, and the novel therapeutics that are currently in various stages of development to achieve a much superior prognosis for the HIV-1-infected population.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.041186-0
2012-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/6/1151.html?itemId=/content/journal/jgv/10.1099/vir.0.041186-0&mimeType=html&fmt=ahah

References

  1. Ahluwalia J. K., Khan S. Z., Soni K., Rawat P., Gupta A., Hariharan M., Scaria V., Lalwani M., Pillai B. other authors 2008; Human cellular microRNA hsa-miR-29a interferes with viral nef protein expression and HIV-1 replication. Retrovirology 5:117 [View Article][PubMed]
    [Google Scholar]
  2. Alexaki A., Wigdahl B. 2008; HIV-1 infection of bone marrow hematopoietic progenitor cells and their role in trafficking and viral dissemination. PLoS Pathog 4:e1000215 [View Article][PubMed]
    [Google Scholar]
  3. Alexaki A., Liu Y., Wigdahl B. 2008; Cellular reservoirs of HIV-1 and their role in viral persistence. Curr HIV Res 6:388–400 [View Article][PubMed]
    [Google Scholar]
  4. Ammosova T., Obukhov Y., Kotelkin A., Breuer D., Beullens M., Gordeuk V. R., Bollen M., Nekhai S. 2011a; Protein phosphatase-1 activates CDK9 by dephosphorylating Ser175. PLoS ONE 6:e18985 [View Article][PubMed]
    [Google Scholar]
  5. Ammosova T., Yedavalli V. R., Niu X., Jerebtsova M., Van Eynde A., Beullens M., Bollen M., Jeang K. T., Nekhai S. 2011b; Expression of a protein phosphatase 1 inhibitor, cdNIPP1, increases CDK9 threonine 186 phosphorylation and inhibits HIV-1 transcription. J Biol Chem 286:3798–3804 [View Article][PubMed]
    [Google Scholar]
  6. Andersen J. L., DeHart J. L., Zimmerman E. S., Ardon O., Kim B., Jacquot G., Benichou S., Planelles V. 2006; HIV-1 Vpr-induced apoptosis is cell cycle dependent and requires Bax but not ANT. PLoS Pathog 2:e127 [View Article][PubMed]
    [Google Scholar]
  7. Archin N. M., Espeseth A., Parker D., Cheema M., Hazuda D., Margolis D. M. 2009; Expression of latent HIV induced by the potent HDAC inhibitor suberoylanilide hydroxamic acid. AIDS Res Hum Retroviruses 25:207–212 [View Article][PubMed]
    [Google Scholar]
  8. Ardon O., Zimmerman E. S., Andersen J. L., DeHart J. L., Blackett J., Planelles V. 2006; Induction of G2 arrest and binding to cyclophilin A are independent phenotypes of human immunodeficiency virus type 1 Vpr. J Virol 80:3694–3700 [View Article][PubMed]
    [Google Scholar]
  9. Arold S., Franken P., Strub M. P., Hoh F., Benichou S., Benarous R., Dumas C. 1997; The crystal structure of HIV-1 Nef protein bound to the Fyn kinase SH3 domain suggests a role for this complex in altered T cell receptor signaling. Structure 5:1361–1372 [View Article][PubMed]
    [Google Scholar]
  10. Bartlett J. A., Miralles G. D., Sevin A. D., Silberman M., Pruitt S. K., Ottinger J., Gryszowska V., Fiscus S. A., Bucy R. P. ACTG 380 Study Team 2002; Addition of cyclophosphamide to antiretroviral therapy does not diminish the cellular reservoir in HIV-infected persons. AIDS Res Hum Retroviruses 18:535–543 [View Article][PubMed]
    [Google Scholar]
  11. Baur A. S. 2011; HIV-Nef and AIDS pathogenesis: are we barking up the wrong tree?. Trends Microbiol 19:435–440 [View Article][PubMed]
    [Google Scholar]
  12. Bedoya L. M., Márquez N., Martínez N., Gutiérrez-Eisman S., Alvarez A., Calzado M. A., Rojas J. M., Appendino G., Muñoz E., Alcamí J. 2009; SJ23B, a jatrophane diterpene activates classical PKCs and displays strong activity against HIV in vitro . Biochem Pharmacol 77:965–978 [View Article][PubMed]
    [Google Scholar]
  13. Bennasser Y., Le S. Y., Benkirane M., Jeang K. T. 2005; Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 22:607–619 [View Article][PubMed]
    [Google Scholar]
  14. Bertin J., Barat C., Méthot S., Tremblay M. J. 2012; Interactions between prostaglandins, leukotrienes and HIV-1: possible implications for the central nervous system. Retrovirology 9:4 [View Article][PubMed]
    [Google Scholar]
  15. Bignami F., Pilotti E., Bertoncelli L., Ronzi P., Gulli M., Marmiroli N., Magnani G., Pinti M., Lopalco L. other authors 2012; Stable changes in CD4+ T-lymphocyte microRNA expression following exposure to HIV-1. Blood doi: 10.1182/blood-2011-09-379503 [View Article][PubMed]
    [Google Scholar]
  16. Blazkova J., Trejbalova K., Gondois-Rey F., Halfon P., Philibert P., Guiguen A., Verdin E., Olive D., Van Lint C. other authors 2009; CpG methylation controls reactivation of HIV from latency. PLoS Pathog 5:e1000554 [View Article][PubMed]
    [Google Scholar]
  17. Bocklandt S., Blumberg P. M., Hamer D. H. 2003; Activation of latent HIV-1 expression by the potent anti-tumor promoter 12-deoxyphorbol 13-phenylacetate. Antiviral Res 59:89–98 [View Article][PubMed]
    [Google Scholar]
  18. Borjabad A., Brooks A. I., Volsky D. J. 2010; Gene expression profiles of HIV-1-infected glia and brain: toward better understanding of the role of astrocytes in HIV-1-associated neurocognitive disorders. J Neuroimmune Pharmacol 5:44–62 [View Article][PubMed]
    [Google Scholar]
  19. Boven L. A., Noorbakhsh F., Bouma G., van der Zee R., Vargas D. L., Pardo C., McArthur J. C., Nottet H. S., Power C. 2007; Brain-derived human immunodeficiency virus-1 Tat exerts differential effects on LTR transactivation and neuroimmune activation. J Neurovirol 13:173–184 [View Article][PubMed]
    [Google Scholar]
  20. Brass A. L., Dykxhoorn D. M., Benita Y., Yan N., Engelman A., Xavier R. J., Lieberman J., Elledge S. J. 2008; Identification of host proteins required for HIV infection through a functional genomic screen. Science 319:921–926 [View Article][PubMed]
    [Google Scholar]
  21. Brigati C., Giacca M., Noonan D. M., Albini A. 2003; HIV Tat, its TARgets and the control of viral gene expression. FEMS Microbiol Lett 220:57–65 [View Article][PubMed]
    [Google Scholar]
  22. Bukrinskaya A. 2007; HIV-1 matrix protein: a mysterious regulator of the viral life cycle. Virus Res 124:1–11 [View Article][PubMed]
    [Google Scholar]
  23. Burdo T. H., Nonnemacher M., Irish B. P., Choi C. H., Krebs F. C., Gartner S., Wigdahl B. 2004; High-affinity interaction between HIV-1 Vpr and specific sequences that span the C/EBP and adjacent NF-κB sites within the HIV-1 LTR correlate with HIV-1-associated dementia. DNA Cell Biol 23:261–269 [View Article][PubMed]
    [Google Scholar]
  24. Burnett J. C., Lim K. I., Calafi A., Rossi J. J., Schaffer D. V., Arkin A. P. 2010; Combinatorial latency reactivation for HIV-1 subtypes and variants. J Virol 84:5958–5974 [View Article][PubMed]
    [Google Scholar]
  25. Chable-Bessia C., Meziane O., Latreille D., Triboulet R., Zamborlini A., Wagschal A., Jacquet J. M., Reynes J., Levy Y. other authors 2009; Suppression of HIV-1 replication by microRNA effectors. Retrovirology 6:26 [View Article][PubMed]
    [Google Scholar]
  26. Chiang K., Sung T. L., Rice A. P. 2012; Regulation of cyclin T1 and HIV-1 replication by microRNAs in resting CD4+ T lymphocytes. J Virol 86:3244–3252 [View Article][PubMed]
    [Google Scholar]
  27. Chiu Y. L., Soros V. B., Kreisberg J. F., Stopak K., Yonemoto W., Greene W. C. 2005; Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature 435:108–114 [View Article][PubMed]
    [Google Scholar]
  28. Choudhary S. K., Margolis D. M. 2011; Curing HIV: pharmacologic approaches to target HIV-1 latency. Annu Rev Pharmacol Toxicol 51:397–418 [View Article][PubMed]
    [Google Scholar]
  29. Christensen H. S., Daher A., Soye K. J., Frankel L. B., Alexander M. R., Lainé S., Bannwarth S., Ong C. L., Chung S. W. other authors 2007; Small interfering RNAs against the TAR RNA binding protein, TRBP, a Dicer cofactor, inhibit human immunodeficiency virus type 1 long terminal repeat expression and viral production. J Virol 81:5121–5131 [View Article][PubMed]
    [Google Scholar]
  30. Chun T. W., Carruth L., Finzi D., Shen X., DiGiuseppe J. A., Taylor H., Hermankova M., Chadwick K., Margolick J. other authors 1997; Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387:183–188 [View Article][PubMed]
    [Google Scholar]
  31. Chun T. W., Engel D., Berrey M. M., Shea T., Corey L., Fauci A. S. 1998; Early establishment of a pool of latently infected, resting CD4+ T cells during primary HIV-1 infection. Proc Natl Acad Sci U S A 95:8869–8873 [View Article][PubMed]
    [Google Scholar]
  32. Chun T. W., Nickle D. C., Justement J. S., Meyers J. H., Roby G., Hallahan C. W., Kottilil S., Moir S., Mican J. M. other authors 2008; Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J Infect Dis 197:714–720 [View Article][PubMed]
    [Google Scholar]
  33. Ciuffi A., Llano M., Poeschla E., Hoffmann C., Leipzig J., Shinn P., Ecker J. R., Bushman F. 2005; A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11:1287–1289 [View Article][PubMed]
    [Google Scholar]
  34. Clements J. E., Gama L., Graham D. R., Mankowski J. L., Zink M. C. 2011; A simian immunodeficiency virus macaque model of highly active antiretroviral treatment: viral latency in the periphery and the central nervous system. Curr Opin HIV AIDS 6:37–42 [View Article][PubMed]
    [Google Scholar]
  35. Cobos-Jiménez V., Booiman T., Hamann J., Kootstra N. A. 2011; Macrophages and HIV-1. Curr Opin HIV AIDS 6:385–390 [View Article][PubMed]
    [Google Scholar]
  36. Coleman C. M., Wu L. 2009; HIV interactions with monocytes and dendritic cells: viral latency and reservoirs. Retrovirology 6:51 [View Article][PubMed]
    [Google Scholar]
  37. Colin L., Van Lint C. 2009; Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology 6:111 [View Article][PubMed]
    [Google Scholar]
  38. Corbeau P. 2008; Interfering RNA and HIV: reciprocal interferences. PLoS Pathog 4:e1000162 [View Article][PubMed]
    [Google Scholar]
  39. Davis L. E., Hjelle B. L., Miller V. E., Palmer D. L., Llewellyn A. L., Merlin T. L., Young S. A., Mills R. G., Wachsman W., Wiley C. A. 1992; Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology 42:1736–1739[PubMed] [CrossRef]
    [Google Scholar]
  40. Demarchi F., Gutierrez M. I., Giacca M. 1999; Human immunodeficiency virus type 1 Tat protein activates transcription factor NF-κB through the cellular interferon-inducible, double-stranded RNA-dependent protein kinase, PKR. J Virol 73:7080–7086[PubMed]
    [Google Scholar]
  41. Deng L., Wang D., de la Fuente C., Wang L., Li H., Lee C. G., Donnelly R., Wade J. D., Lambert P., Kashanchi F. 2001; Enhancement of the p300 HAT activity by HIV-1 Tat on chromatin DNA. Virology 289:312–326 [View Article][PubMed]
    [Google Scholar]
  42. Deshmane S. L., Mukerjee R., Fan S., Del Valle L., Michiels C., Sweet T., Rom I., Khalili K., Rappaport J. other authors 2009; Activation of the oxidative stress pathway by HIV-1 Vpr leads to induction of hypoxia-inducible factor 1α expression. J Biol Chem 284:11364–11373 [View Article][PubMed]
    [Google Scholar]
  43. Dong C., Kwas C., Wu L. 2009; Transcriptional restriction of human immunodeficiency virus type 1 gene expression in undifferentiated primary monocytes. J Virol 83:3518–3527 [View Article][PubMed]
    [Google Scholar]
  44. du Chéné I., Basyuk E., Lin Y. L., Triboulet R., Knezevich A., Chable-Bessia C., Mettling C., Baillat V., Reynes J. other authors 2007; Suv39H1 and HP1γ are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency. EMBO J 26:424–435 [View Article][PubMed]
    [Google Scholar]
  45. Easley R., Van Duyne R., Coley W., Guendel I., Dadgar S., Kehn-Hall K., Kashanchi F. 2010; Chromatin dynamics associated with HIV-1 Tat-activated transcription. Biochim Biophys Acta 1799:275–285[PubMed] [CrossRef]
    [Google Scholar]
  46. Eckstein D. A., Sherman M. P., Penn M. L., Chin P. S., De Noronha C. M., Greene W. C., Goldsmith M. A. 2001; HIV-1 Vpr enhances viral burden by facilitating infection of tissue macrophages but not nondividing CD4+ T cells. J Exp Med 194:1407–1419 [View Article][PubMed]
    [Google Scholar]
  47. Epie N., Ammosova T., Turner W., Nekhai S. 2006; Inhibition of PP2A by LIS1 increases HIV-1 gene expression. Retrovirology 3:65 [View Article][PubMed]
    [Google Scholar]
  48. Eugenin E. A., Clements J. E., Zink M. C., Berman J. W. 2011; Human immunodeficiency virus infection of human astrocytes disrupts blood-brain barrier integrity by a gap junction-dependent mechanism. J Neurosci 31:9456–9465 [View Article][PubMed]
    [Google Scholar]
  49. Fenard D., Yonemoto W., de Noronha C., Cavrois M., Williams S. A., Greene W. C. 2005; Nef is physically recruited into the immunological synapse and potentiates T cell activation early after TCR engagement. J Immunol 175:6050–6057[PubMed] [CrossRef]
    [Google Scholar]
  50. Fenyö E. M., Morfeldt-Månson L., Chiodi F., Lind B., von Gegerfelt A., Albert J., Olausson E., Asjö B. 1988; Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates. J Virol 62:4414–4419[PubMed]
    [Google Scholar]
  51. Fiorentini S., Giagulli C., Caccuri F., Magiera A. K., Caruso A. 2010; HIV-1 matrix protein p17: a candidate antigen for therapeutic vaccines against AIDS. Pharmacol Ther 128:433–444 [View Article][PubMed]
    [Google Scholar]
  52. Fortin J. F., Barat C., Beauséjour Y., Barbeau B., Tremblay M. J. 2004; Hyper-responsiveness to stimulation of human immunodeficiency virus-infected CD4+ T cells requires Nef and Tat virus gene products and results from higher NFAT, NF-κB, and AP-1 induction. J Biol Chem 279:39520–39531 [View Article][PubMed]
    [Google Scholar]
  53. Futaki S., Suzuki T., Ohashi W., Yagami T., Tanaka S., Ueda K., Sugiura Y. 2001; Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840 [View Article][PubMed]
    [Google Scholar]
  54. Gatignol A., Lainé S., Clerzius G. 2005; Dual role of TRBP in HIV replication and RNA interference: viral diversion of a cellular pathway or evasion from antiviral immunity?. Retrovirology 2:65 [View Article][PubMed]
    [Google Scholar]
  55. Giagulli C., Marsico S., Magiera A. K., Bruno R., Caccuri F., Barone I., Fiorentini S., Andò S., Caruso A. 2011; Opposite effects of HIV-1 p17 variants on PTEN activation and cell growth in B cells. PLoS ONE 6:e17831 [View Article][PubMed]
    [Google Scholar]
  56. Haasnoot J., de Vries W., Geutjes E. J., Prins M., de Haan P., Berkhout B. 2007; The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog 3:e86 [View Article][PubMed]
    [Google Scholar]
  57. Hakre S., Chavez L., Shirakawa K., Verdin E. 2011; Epigenetic regulation of HIV latency. Curr Opin HIV AIDS 6:19–24 [View Article][PubMed]
    [Google Scholar]
  58. Hariharan M., Scaria V., Pillai B., Brahmachari S. K. 2005; Targets for human encoded microRNAs in HIV genes. Biochem Biophys Res Commun 337:1214–1218 [View Article][PubMed]
    [Google Scholar]
  59. Hayes A. M., Qian S., Yu L., Boris-Lawrie K. 2011; Tat RNA silencing suppressor activity contributes to perturbation of lymphocyte miRNA by HIV-1. Retrovirology 8:36 [View Article][PubMed]
    [Google Scholar]
  60. Henderson A. J., Calame K. L. 1997; CCAAT/enhancer binding protein (C/EBP) sites are required for HIV-1 replication in primary macrophages but not CD4+ T cells. Proc Natl Acad Sci U S A 94:8714–8719 [View Article][PubMed]
    [Google Scholar]
  61. Herbein G., Varin A. 2010; The macrophage in HIV-1 infection: from activation to deactivation?. Retrovirology 7:33 [View Article][PubMed]
    [Google Scholar]
  62. Herbein G., Gras G., Khan K. A., Abbas W. 2010; Macrophage signaling in HIV-1 infection. Retrovirology 7:34 [View Article][PubMed]
    [Google Scholar]
  63. Hogan T. H., Nonnemacher M. R., Krebs F. C., Henderson A., Wigdahl B. 2003; HIV-1 Vpr binding to HIV-1 LTR C/EBP cis-acting elements and adjacent regions is sequence-specific. Biomed Pharmacother 57:41–48 [View Article][PubMed]
    [Google Scholar]
  64. Honda Y., Rogers L., Nakata K., Zhao B. Y., Pine R., Nakai Y., Kurosu K., Rom W. N., Weiden M. 1998; Type I interferon induces inhibitory 16-kD CCAAT/enhancer binding protein (C/EBP)β, repressing the HIV-1 long terminal repeat in macrophages: pulmonary tuberculosis alters C/EBP expression, enhancing HIV-1 replication. J Exp Med 188:1255–1265 [View Article][PubMed]
    [Google Scholar]
  65. Horiba M., Martinez L. B., Buescher J. L., Sato S., Limoges J., Jiang Y., Jones C., Ikezu T. 2007; OTK18, a zinc-finger protein, regulates human immunodeficiency virus type 1 long terminal repeat through two distinct regulatory regions. J Gen Virol 88:236–241 [View Article][PubMed]
    [Google Scholar]
  66. Hoshino Y., Nakata K., Hoshino S., Honda Y., Tse D. B., Shioda T., Rom W. N., Weiden M. 2002; Maximal HIV-1 replication in alveolar macrophages during tuberculosis requires both lymphocyte contact and cytokines. J Exp Med 195:495–505 [View Article][PubMed]
    [Google Scholar]
  67. Houzet L., Jeang K. T. 2011; MicroRNAs and human retroviruses. Biochim Biophys Acta 1809:686–693[PubMed] [CrossRef]
    [Google Scholar]
  68. Houzet L., Morichaud Z., Didierlaurent L., Muriaux D., Darlix J. L., Mougel M. 2008; Nucleocapsid mutations turn HIV-1 into a DNA-containing virus. Nucleic Acids Res 36:2311–2319 [View Article][PubMed]
    [Google Scholar]
  69. Howcroft T. K., Strebel K., Martin M. A., Singer D. S. 1993; Repression of MHC class I gene promoter activity by two-exon Tat of HIV. Science 260:1320–1322 [View Article][PubMed]
    [Google Scholar]
  70. Huang J., Wang F., Argyris E., Chen K., Liang Z., Tian H., Huang W., Squires K., Verlinghieri G., Zhang H. 2007; Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med 13:1241–1247 [View Article][PubMed]
    [Google Scholar]
  71. Igarashi T., Brown C. R., Endo Y., Buckler-White A., Plishka R., Bischofberger N., Hirsch V., Martin M. A. 2001; Macrophage are the principal reservoir and sustain high virus loads in rhesus macaques after the depletion of CD4+ T cells by a highly pathogenic simian immunodeficiency virus/HIV type 1 chimera (SHIV): implications for HIV-1 infections of humans. Proc Natl Acad Sci U S A 98:658–663 [View Article][PubMed]
    [Google Scholar]
  72. Jäger S., Cimermancic P., Gulbahce N., Johnson J. R., McGovern K. E., Clarke S. C., Shales M., Mercenne G., Pache L. other authors 2012; Global landscape of HIV-human protein complexes. Nature 481:365–370[PubMed]
    [Google Scholar]
  73. Jeang K. T., Berkhout B., Dropulic B. 1993; Effects of integration and replication on transcription of the HIV-1 long terminal repeat. J Biol Chem 268:24940–24949[PubMed]
    [Google Scholar]
  74. Karn J. 2011; The molecular biology of HIV latency: breaking and restoring the Tat-dependent transcriptional circuit. Curr Opin HIV AIDS 6:4–11 [View Article][PubMed]
    [Google Scholar]
  75. Kauder S. E., Bosque A., Lindqvist A., Planelles V., Verdin E. 2009; Epigenetic regulation of HIV-1 latency by cytosine methylation. PLoS Pathog 5:e1000495 [View Article][PubMed]
    [Google Scholar]
  76. Kilareski E. M., Shah S., Nonnemacher M. R., Wigdahl B. 2009; Regulation of HIV-1 transcription in cells of the monocyte-macrophage lineage. Retrovirology 6:118 [View Article][PubMed]
    [Google Scholar]
  77. Kim H. J., Martemyanov K. A., Thayer S. A. 2008a; Human immunodeficiency virus protein Tat induces synapse loss via a reversible process that is distinct from cell death. J Neurosci 28:12604–12613 [View Article][PubMed]
    [Google Scholar]
  78. Kim S. A., Chang S., Yoon J. H., Ahn S. G. 2008b; TAT-Hsp40 inhibits oxidative stress-mediated cytotoxicity via the inhibition of Hsp70 ubiquitination. FEBS Lett 582:734–740 [View Article][PubMed]
    [Google Scholar]
  79. Kim N., Kukkonen S., Gupta S., Aldovini A. 2010; Association of Tat with promoters of PTEN and PP2A subunits is key to transcriptional activation of apoptotic pathways in HIV-infected CD4+ T cells. PLoS Pathog 6:e1001103 [View Article][PubMed]
    [Google Scholar]
  80. Kino T., Pavlakis G. N. 2004; Partner molecules of accessory protein Vpr of the human immunodeficiency virus type 1. DNA Cell Biol 23:193–205 [View Article][PubMed]
    [Google Scholar]
  81. Kino T., Gragerov A., Kopp J. B., Stauber R. H., Pavlakis G. N., Chrousos G. P. 1999; The HIV-1 virion-associated protein Vpr is a coactivator of the human glucocorticoid receptor. J Exp Med 189:51–62 [View Article][PubMed]
    [Google Scholar]
  82. Kirchhoff F. 2010; Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses. Cell Host Microbe 8:55–67 [View Article][PubMed]
    [Google Scholar]
  83. Klase Z., Kale P., Winograd R., Gupta M. V., Heydarian M., Berro R., McCaffrey T., Kashanchi F. 2007; HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR. BMC Mol Biol 8:63 [View Article][PubMed]
    [Google Scholar]
  84. Klase Z., Winograd R., Davis J., Carpio L., Hildreth R., Heydarian M., Fu S., McCaffrey T., Meiri E. other authors 2009; HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression. Retrovirology 6:18 [View Article][PubMed]
    [Google Scholar]
  85. Klichko V., Archin N., Kaur R., Lehrman G., Margolis D. 2006; Hexamethylbisacetamide remodels the human immunodeficiency virus type 1 (HIV-1) promoter and induces Tat-independent HIV-1 expression but blunts cell activation. J Virol 80:4570–4579 [View Article][PubMed]
    [Google Scholar]
  86. Kogan M., Rappaport J. 2011; HIV-1 accessory protein Vpr: relevance in the pathogenesis of HIV and potential for therapeutic intervention. Retrovirology 8:25 [View Article][PubMed]
    [Google Scholar]
  87. Komuro I., Yokota Y., Yasuda S., Iwamoto A., Kagawa K. S. 2003; CSF-induced and HIV-1-mediated distinct regulation of Hck and C/EBPβ represent a heterogeneous susceptibility of monocyte-derived macrophages to M-tropic HIV-1 infection. J Exp Med 198:443–453 [View Article][PubMed]
    [Google Scholar]
  88. König R., Zhou Y., Elleder D., Diamond T. L., Bonamy G. M., Irelan J. T., Chiang C. Y., Tu B. P., De Jesus P. D. other authors 2008; Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135:49–60 [View Article][PubMed]
    [Google Scholar]
  89. Krautkrämer E., Giese S. I., Gasteier J. E., Muranyi W., Fackler O. T. 2004; Human immunodeficiency virus type 1 Nef activates p21-activated kinase via recruitment into lipid rafts. J Virol 78:4085–4097 [View Article][PubMed]
    [Google Scholar]
  90. Kulkosky J., Culnan D. M., Roman J., Dornadula G., Schnell M., Boyd M. R., Pomerantz R. J. 2001; Prostratin: activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART. Blood 98:3006–3015 [View Article][PubMed]
    [Google Scholar]
  91. Kutney S. N., Hong R., Macfarlan T., Chakravarti D. 2004; A signaling role of histone-binding proteins and INHAT subunits pp32 and Set/TAF-Iβ in integrating chromatin hypoacetylation and transcriptional repression. J Biol Chem 279:30850–30855 [View Article][PubMed]
    [Google Scholar]
  92. Le Douce V., Herbein G., Rohr O., Schwartz C. 2010; Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage. Retrovirology 7:32 [View Article][PubMed]
    [Google Scholar]
  93. Lee E. S., Sarma D., Zhou H., Henderson A. J. 2002; CCAAT/enhancer binding proteins are not required for HIV-1 entry but regulate proviral transcription by recruiting coactivators to the long-terminal repeat in monocytic cells. Virology 299:20–31 [View Article][PubMed]
    [Google Scholar]
  94. Levy D. N., Refaeli Y., Weiner D. B. 1995; Extracellular Vpr protein increases cellular permissiveness to human immunodeficiency virus replication and reactivates virus from latency. J Virol 69:1243–1252[PubMed]
    [Google Scholar]
  95. Lewinski M. K., Bisgrove D., Shinn P., Chen H., Hoffmann C., Hannenhalli S., Verdin E., Berry C. C., Ecker J. R., Bushman F. D. 2005; Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J Virol 79:6610–6619 [View Article][PubMed]
    [Google Scholar]
  96. Li J. C., Lee D. C., Cheung B. K., Lau A. S. 2005; Mechanisms for HIV Tat upregulation of IL-10 and other cytokine expression: kinase signaling and PKR-mediated immune response. FEBS Lett 579:3055–3062 [View Article][PubMed]
    [Google Scholar]
  97. Li L., Aiamkitsumrit B., Pirrone V., Nonnemacher M. R., Wojno A., Passic S., Flaig K., Kilareski E., Blakey B. other authors 2011; Development of co-selected single nucleotide polymorphisms in the viral promoter precedes the onset of human immunodeficiency virus type 1-associated neurocognitive impairment. J Neurovirol 17:92–109 [View Article][PubMed]
    [Google Scholar]
  98. Lisziewicz J., Foli A., Wainberg M., Lori F. 2003; Hydroxyurea in the treatment of HIV infection: clinical efficacy and safety concerns. Drug Saf 26:605–624 [View Article][PubMed]
    [Google Scholar]
  99. Liu Y., Nonnemacher M. R., Stauff D. L., Li L., Banerjee A., Irish B., Kilareski E., Rajagopalan N., Suchitra J. B. other authors 2010; Structural and functional studies of CCAAT/enhancer binding sites within the human immunodeficiency virus type 1 subtype C LTR. Biomed Pharmacother 64:672–680 [View Article][PubMed]
    [Google Scholar]
  100. López-Huertas M. R., Callejas S., Abia D., Mateos E., Dopazo A., Alcamí J., Coiras M. 2010; Modifications in host cell cytoskeleton structure and function mediated by intracellular HIV-1 Tat protein are greatly dependent on the second coding exon. Nucleic Acids Res 38:3287–3307 [View Article][PubMed]
    [Google Scholar]
  101. Loré K., Smed-Sörensen A., Vasudevan J., Mascola J. R., Koup R. A. 2005; Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4+ T cells. J Exp Med 201:2023–2033 [View Article][PubMed]
    [Google Scholar]
  102. Lori F., Malykh A., Cara A., Sun D., Weinstein J. N., Lisziewicz J., Gallo R. C. 1994; Hydroxyurea as an inhibitor of human immunodeficiency virus-type 1 replication. Science 266:801–805 [View Article][PubMed]
    [Google Scholar]
  103. Lu S., Cullen B. R. 2004; Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis. J Virol 78:12868–12876 [View Article][PubMed]
    [Google Scholar]
  104. Lusic M., Marcello A., Cereseto A., Giacca M. 2003; Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter. EMBO J 22:6550–6561 [View Article][PubMed]
    [Google Scholar]
  105. Malim M. H. 2009; APOBEC proteins and intrinsic resistance to HIV-1 infection. Philos Trans R Soc Lond B Biol Sci 364:675–687 [View Article][PubMed]
    [Google Scholar]
  106. Malim M. H., Emerman M. 2008; HIV-1 accessory proteins–ensuring viral survival in a hostile environment. Cell Host Microbe 3:388–398 [View Article][PubMed]
    [Google Scholar]
  107. Margolis D. M. 2011; Histone deacetylase inhibitors and HIV latency. Curr Opin HIV AIDS 6:25–29 [View Article][PubMed]
    [Google Scholar]
  108. Marini E., Tiberio L., Caracciolo S., Tosti G., Guzman C. A., Schiaffonati L., Fiorentini S., Caruso A. 2008; HIV-1 matrix protein p17 binds to monocytes and selectively stimulates MCP-1 secretion: role of transcriptional factor AP-1. Cell Microbiol 10:655–666 [View Article][PubMed]
    [Google Scholar]
  109. Mascarenhas A. P., Musier-Forsyth K. 2009; The capsid protein of human immunodeficiency virus: interactions of HIV-1 capsid with host protein factors. FEBS J 276:6118–6127 [View Article][PubMed]
    [Google Scholar]
  110. McNamara L. A., Collins K. L. 2011; Hematopoietic stem/precursor cells as HIV reservoirs. Curr Opin HIV AIDS 6:43–48 [View Article][PubMed]
    [Google Scholar]
  111. Morris K. V. 2005; siRNA-mediated transcriptional gene silencing: the potential mechanism and a possible role in the histone code. Cell Mol Life Sci 62:3057–3066 [View Article][PubMed]
    [Google Scholar]
  112. Mukerjee R., Chang J. R., Del Valle L., Bagashev A., Gayed M. M., Lyde R. B., Hawkins B. J., Brailoiu E., Cohen E. other authors 2011; Deregulation of microRNAs by HIV-1 Vpr protein leads to the development of neurocognitive disorders. J Biol Chem 286:34976–34985 [View Article][PubMed]
    [Google Scholar]
  113. Na H., Acharjee S., Jones G., Vivithanaporn P., Noorbakhsh F., McFarlane N., Maingat F., Ballanyi K., Pardo C. A. other authors 2011; Interactions between human immunodeficiency virus (HIV)-1 Vpr expression and innate immunity influence neurovirulence. Retrovirology 8:44 [View Article][PubMed]
    [Google Scholar]
  114. Narasipura S. D., Henderson L. J., Fu S. W., Chen L., Kashanchi F., Al-Harthi L. 2012; Role of β-catenin and TCF/LEF family members in transcriptional activity of HIV in astrocytes. J Virol 86:1911–1921 [View Article][PubMed]
    [Google Scholar]
  115. Narayanan A., Kehn-Hall K., Bailey C., Kashanchi F. 2011; Analysis of the roles of HIV-derived microRNAs. Expert Opin Biol Ther 11:17–29 [View Article][PubMed]
    [Google Scholar]
  116. Nathans R., Chu C. Y., Serquina A. K., Lu C. C., Cao H., Rana T. M. 2009; Cellular microRNA and P bodies modulate host-HIV-1 interactions. Mol Cell 34:696–709 [View Article][PubMed]
    [Google Scholar]
  117. Neri F., Giolo G., Potestà M., Petrini S., Doria M. 2011; The HIV-1 Nef protein has a dual role in T cell receptor signaling in infected CD4+ T lymphocytes. Virology 410:316–326 [View Article][PubMed]
    [Google Scholar]
  118. Neuveut C., Jeang K. T. 1996; Recombinant human immunodeficiency virus type 1 genomes with Tat unconstrained by overlapping reading frames reveal residues in Tat important for replication in tissue culture. J Virol 70:5572–5581[PubMed]
    [Google Scholar]
  119. Olivieri K. C., Mukerji J., Gabuzda D. 2011; Nef-mediated enhancement of cellular activation and human immunodeficiency virus type 1 replication in primary T cells is dependent on association with p21-activated kinase 2. Retrovirology 8:64 [View Article][PubMed]
    [Google Scholar]
  120. Omoto S., Fujii Y. R. 2005; Regulation of human immunodeficiency virus 1 transcription by nef microRNA. J Gen Virol 86:751–755 [View Article][PubMed]
    [Google Scholar]
  121. Omoto S., Ito M., Tsutsumi Y., Ichikawa Y., Okuyama H., Brisibe E. A., Saksena N. K., Fujii Y. R. 2004; HIV-1 nef suppression by virally encoded microRNA. Retrovirology 1:44 [View Article][PubMed]
    [Google Scholar]
  122. Orenstein J. M., Meltzer M. S., Phipps T., Gendelman H. E. 1988; Cytoplasmic assembly and accumulation of human immunodeficiency virus types 1 and 2 in recombinant human colony-stimulating factor-1-treated human monocytes: an ultrastructural study. J Virol 62:2578–2586[PubMed]
    [Google Scholar]
  123. Orenstein J. M., Fox C., Wahl S. M. 1997; Macrophages as a source of HIV during opportunistic infections. Science 276:1857–1861 [View Article][PubMed]
    [Google Scholar]
  124. Ouellet D. L., Plante I., Barat C., Tremblay M. J., Provost P. 2009; Emergence of a complex relationship between HIV-1 and the microRNA pathway. Methods Mol Biol 487:415–433[PubMed]
    [Google Scholar]
  125. Pearson R., Kim Y. K., Hokello J., Lassen K., Friedman J., Tyagi M., Karn J. 2008; Epigenetic silencing of human immunodeficiency virus (HIV) transcription by formation of restrictive chromatin structures at the viral long terminal repeat drives the progressive entry of HIV into latency. J Virol 82:12291–12303 [View Article][PubMed]
    [Google Scholar]
  126. Peterlin B. M., Price D. H. 2006; Controlling the elongation phase of transcription with P-TEFb. Mol Cell 23:297–305 [View Article][PubMed]
    [Google Scholar]
  127. Piller S. C., Jans P., Gage P. W., Jans D. A. 1998; Extracellular HIV-1 virus protein R causes a large inward current and cell death in cultured hippocampal neurons: implications for AIDS pathology. Proc Natl Acad Sci U S A 95:4595–4600 [View Article][PubMed]
    [Google Scholar]
  128. Ping Y. H., Rana T. M. 2001; DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. J Biol Chem 276:12951–12958 [View Article][PubMed]
    [Google Scholar]
  129. Qian S., Zhong X., Yu L., Ding B., de Haan P., Boris-Lawrie K. 2009; HIV-1 Tat RNA silencing suppressor activity is conserved across kingdoms and counteracts translational repression of HIV-1. Proc Natl Acad Sci U S A 106:605–610 [View Article][PubMed]
    [Google Scholar]
  130. Quivy V., De Walque S., Van Lint C. 2007; Chromatin-associated regulation of HIV-1 transcription: implications for the development of therapeutic strategies. Subcell Biochem 41:371–396[PubMed]
    [Google Scholar]
  131. Ranjbar S., Tsytsykova A. V., Lee S. K., Rajsbaum R., Falvo J. V., Lieberman J., Shankar P., Goldfeld A. E. 2006; NFAT5 regulates HIV-1 in primary monocytes via a highly conserved long terminal repeat site. PLoS Pathog 2:e130 [View Article][PubMed]
    [Google Scholar]
  132. Rauch S., Pulkkinen K., Saksela K., Fackler O. T. 2008; Human immunodeficiency virus type 1 Nef recruits the guanine exchange factor Vav1 via an unexpected interface into plasma membrane microdomains for association with p21-activated kinase 2 activity. J Virol 82:2918–2929 [View Article][PubMed]
    [Google Scholar]
  133. Ravimohan S., Gama L., Barber S. A., Clements J. E. 2010; Regulation of SIV mac 239 basal long terminal repeat activity and viral replication in macrophages: functional roles of two CCAAT/enhancer-binding protein beta sites in activation and interferon beta-mediated suppression. J Biol Chem 285:2258–2273 [View Article][PubMed]
    [Google Scholar]
  134. Refaeli Y., Levy D. N., Weiner D. B. 1995; The glucocorticoid receptor type II complex is a target of the HIV-1 Vpr gene product. Proc Natl Acad Sci U S A 92:3621–3625 [View Article][PubMed]
    [Google Scholar]
  135. Reuse S., Calao M., Kabeya K., Guiguen A., Gatot J. S., Quivy V., Vanhulle C., Lamine A., Vaira D. other authors 2009; Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection. PLoS ONE 4:e6093 [View Article][PubMed]
    [Google Scholar]
  136. Roeth J. F., Collins K. L. 2006; Human immunodeficiency virus type 1 Nef: adapting to intracellular trafficking pathways. Microbiol Mol Biol Rev 70:548–563 [View Article][PubMed]
    [Google Scholar]
  137. Rohr O., Marban C., Aunis D., Schaeffer E. 2003; Regulation of HIV-1 gene transcription: from lymphocytes to microglial cells. J Leukoc Biol 74:736–749 [View Article][PubMed]
    [Google Scholar]
  138. Rom S., Rom I., Passiatore G., Pacifici M., Radhakrishnan S., Del Valle L., Piña-Oviedo S., Khalili K., Eletto D., Peruzzi F. 2010; CCL8/MCP-2 is a target for mir-146a in HIV-1-infected human microglial cells. FASEB J 24:2292–2300 [View Article][PubMed]
    [Google Scholar]
  139. Ross H. L., Gartner S., McArthur J. C., Corboy J. R., McAllister J. J., Millhouse S., Wigdahl B. 2001; HIV-1 LTR C/EBP binding site sequence configurations preferentially encountered in brain lead to enhanced C/EBP factor binding and increased LTR-specific activity. J Neurovirol 7:235–249 [View Article][PubMed]
    [Google Scholar]
  140. Rossi A., Mukerjee R., Ferrante P., Khalili K., Amini S., Sawaya B. E. 2006; Human immunodeficiency virus type 1 Tat prevents dephosphorylation of Sp1 by TCF-4 in astrocytes. J Gen Virol 87:1613–1623 [View Article][PubMed]
    [Google Scholar]
  141. Sánchez-Del Cojo M., López-Huertas M. R., Mateos E., Alcamí J., Coiras M. 2011; Mechanisms of RNA interference in the HIV-1-host cell interplay. AIDS Rev 13:149–160[PubMed]
    [Google Scholar]
  142. Sanghvi V. R., Steel L. F. 2011; A re-examination of global suppression of RNA interference by HIV-1. PLoS ONE 6:e17246 [View Article][PubMed]
    [Google Scholar]
  143. Sato K., Koyanagi Y. 2011; The mouse is out of the bag: insights and perspectives on HIV-1-infected humanized mouse models. Exp Biol Med (Maywood) 236:977–985 [View Article][PubMed]
    [Google Scholar]
  144. Savarino A., Mai A., Norelli S., El Daker S., Valente S., Rotili D., Altucci L., Palamara A. T., Garaci E. 2009; “Shock and kill” effects of class I-selective histone deacetylase inhibitors in combination with the glutathione synthesis inhibitor buthionine sulfoximine in cell line models for HIV-1 quiescence. Retrovirology 6:52 [View Article][PubMed]
    [Google Scholar]
  145. Schnettler E., de Vries W., Hemmes H., Haasnoot J., Kormelink R., Goldbach R., Berkhout B. 2009; The NS3 protein of rice hoja blanca virus complements the RNAi suppressor function of HIV-1 Tat. EMBO Rep 10:258–263 [View Article][PubMed]
    [Google Scholar]
  146. Schopman N. C., Willemsen M., Liu Y. P., Bradley T., van Kampen A., Baas F., Berkhout B., Haasnoot J. 2012; Deep sequencing of virus-infected cells reveals HIV-encoded small RNAs. Nucleic Acids Res 40:414–427 [View Article][PubMed]
    [Google Scholar]
  147. Schröder A. R., Shinn P., Chen H., Berry C., Ecker J. R., Bushman F. 2002; HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521–529 [View Article][PubMed]
    [Google Scholar]
  148. Seelamgari A., Maddukuri A., Berro R., de la Fuente C., Kehn K., Deng L., Dadgar S., Bottazzi M. E., Ghedin E. other authors 2004; Role of viral regulatory and accessory proteins in HIV-1 replication. Front Biosci 9:2388–2413 [View Article][PubMed]
    [Google Scholar]
  149. Sherman M. P., Schubert U., Williams S. A., de Noronha C. M., Kreisberg J. F., Henklein P., Greene W. C. 2002; HIV-1 Vpr displays natural protein-transducing properties: implications for viral pathogenesis. Virology 302:95–105 [View Article][PubMed]
    [Google Scholar]
  150. Simmons A., Gangadharan B., Hodges A., Sharrocks K., Prabhakar S., García A., Dwek R., Zitzmann N., McMichael A. 2005; Nef-mediated lipid raft exclusion of UbcH7 inhibits Cbl activity in T cells to positively regulate signaling. Immunity 23:621–634 [View Article][PubMed]
    [Google Scholar]
  151. Sloan R. D., Donahue D. A., Kuhl B. D., Bar-Magen T., Wainberg M. A. 2010; Expression of Nef from unintegrated HIV-1 DNA downregulates cell surface CXCR4 and CCR5 on T-lymphocytes. Retrovirology 7:44 [View Article][PubMed]
    [Google Scholar]
  152. Solas C., Lafeuillade A., Halfon P., Chadapaud S., Hittinger G., Lacarelle B. 2003; Discrepancies between protease inhibitor concentrations and viral load in reservoirs and sanctuary sites in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 47:238–243 [View Article][PubMed]
    [Google Scholar]
  153. Strazza M., Pirrone V., Wigdahl B., Nonnemacher M. R. 2011; Breaking down the barrier: the effects of HIV-1 on the blood-brain barrier. Brain Res 1399:96–115 [View Article][PubMed]
    [Google Scholar]
  154. Subbramanian R. A., Xu J., Toma E., Morisset R., Cohen E. A., Menezes J., Ahmad A. 2002; Comparison of human immunodeficiency virus (HIV)-specific infection-enhancing and -inhibiting antibodies in AIDS patients. J Clin Microbiol 40:2141–2146 [View Article][PubMed]
    [Google Scholar]
  155. Sun G., Li H., Wu X., Covarrubias M., Scherer L., Meinking K., Luk B., Chomchan P., Alluin J. other authors 2011; Interplay between HIV-1 infection and host microRNAs. Nucleic Acids Res [View Article][PubMed]
    [Google Scholar]
  156. Sung T. L., Rice A. P. 2009; miR-198 inhibits HIV-1 gene expression and replication in monocytes and its mechanism of action appears to involve repression of cyclin T1. PLoS Pathog 5:e1000263 [View Article][PubMed]
    [Google Scholar]
  157. Swingler S., Brichacek B., Jacque J. M., Ulich C., Zhou J., Stevenson M. 2003; HIV-1 Nef intersects the macrophage CD40L signalling pathway to promote resting-cell infection. Nature 424:213–219 [View Article][PubMed]
    [Google Scholar]
  158. Tahirov T. H., Babayeva N. D., Varzavand K., Cooper J. J., Sedore S. C., Price D. H. 2010; Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 465:747–751 [View Article][PubMed]
    [Google Scholar]
  159. Tanaka N., Hoshino Y., Gold J., Hoshino S., Martiniuk F., Kurata T., Pine R., Levy D., Rom W. N., Weiden M. 2005; Interleukin-10 induces inhibitory C/EBPβ through STAT-3 and represses HIV-1 transcription in macrophages. Am J Respir Cell Mol Biol 33:406–411 [View Article][PubMed]
    [Google Scholar]
  160. Trible R. P., Emert-Sedlak L., Smithgall T. E. 2006; HIV-1 Nef selectively activates Src family kinases Hck, Lyn, and c-Src through direct SH3 domain interaction. J Biol Chem 281:27029–27038 [View Article][PubMed]
    [Google Scholar]
  161. Triboulet R., Mari B., Lin Y. L., Chable-Bessia C., Bennasser Y., Lebrigand K., Cardinaud B., Maurin T., Barbry P. other authors 2007; Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315:1579–1582 [View Article][PubMed]
    [Google Scholar]
  162. Tyagi M., Rusnati M., Presta M., Giacca M. 2001; Internalization of HIV-1 Tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276:3254–3261 [View Article][PubMed]
    [Google Scholar]
  163. Tyagi M., Pearson R. J., Karn J. 2010; Establishment of HIV latency in primary CD4+ cells is due to epigenetic transcriptional silencing and P-TEFb restriction. J Virol 84:6425–6437 [View Article][PubMed]
    [Google Scholar]
  164. Van Duyne R., Easley R., Wu W., Berro R., Pedati C., Klase Z., Kehn-Hall K., Flynn E. K., Symer D. E., Kashanchi F. 2008; Lysine methylation of HIV-1 Tat regulates transcriptional activity of the viral LTR. Retrovirology 5:40 [View Article][PubMed]
    [Google Scholar]
  165. Van Lint C. 2000; Role of chromatin in HIV-1 transcriptional regulation. Adv Pharmacol 48:121–160 [View Article][PubMed]
    [Google Scholar]
  166. Vardabasso C., Manganaro L., Lusic M., Marcello A., Giacca M. 2008; The histone chaperone protein nucleosome assembly protein-1 (hNAP-1) binds HIV-1 Tat and promotes viral transcription. Retrovirology 5:8 [View Article][PubMed]
    [Google Scholar]
  167. Varin A., Decrion A. Z., Sabbah E., Quivy V., Sire J., Van Lint C., Roques B. P., Aggarwal B. B., Herbein G. 2005; Synthetic Vpr protein activates activator protein-1, c-Jun N-terminal kinase, and NF-κB and stimulates HIV-1 transcription in promonocytic cells and primary macrophages. J Biol Chem 280:42557–42567 [View Article][PubMed]
    [Google Scholar]
  168. Verschure P. J., Visser A. E., Rots M. G. 2006; Step out of the groove: epigenetic gene control systems and engineered transcription factors. Adv Genet 56:163–204 [View Article][PubMed]
    [Google Scholar]
  169. Vlach J., Garcia A., Jacqué J. M., Rodriguez M. S., Michelson S., Virelizier J. L. 1995; Induction of Sp1 phosphorylation and NF-κB-independent HIV promoter domain activity in T lymphocytes stimulated by okadaic acid. Virology 208:753–761 [View Article][PubMed]
    [Google Scholar]
  170. Wang X., Ye L., Hou W., Zhou Y., Wang Y. J., Metzger D. S., Ho W. Z. 2009; Cellular microRNA expression correlates with susceptibility of monocytes/macrophages to HIV-1 infection. Blood 113:671–674 [View Article][PubMed]
    [Google Scholar]
  171. Weinberg J. B., Matthews T. J., Cullen B. R., Malim M. H. 1991; Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J Exp Med 174:1477–1482 [View Article][PubMed]
    [Google Scholar]
  172. Weinberger L. S., Burnett J. C., Toettcher J. E., Arkin A. P., Schaffer D. V. 2005; Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 122:169–182 [View Article][PubMed]
    [Google Scholar]
  173. Weinberger L. S., Dar R. D., Simpson M. L. 2008; Transient-mediated fate determination in a transcriptional circuit of HIV. Nat Genet 40:466–470 [View Article][PubMed]
    [Google Scholar]
  174. Williams S. A., Greene W. C. 2007; Regulation of HIV-1 latency by T-cell activation. Cytokine 39:63–74 [View Article][PubMed]
    [Google Scholar]
  175. Witwer K. W., Watson A. K., Blankson J. N., Clements J. E. 2012; Relationships of PBMC microRNA expression, plasma viral load, and CD4+ T-cell count in HIV-1-infected elite suppressors and viremic patients. Retrovirology 9:5 [View Article][PubMed]
    [Google Scholar]
  176. Wong K., Sharma A., Awasthi S., Matlock E. F., Rogers L., Van Lint C., Skiest D. J., Burns D. K., Harrod R. 2005; HIV-1 Tat interactions with p300 and PCAF transcriptional coactivators inhibit histone acetylation and neurotrophin signaling through CREB. J Biol Chem 280:9390–9399 [View Article][PubMed]
    [Google Scholar]
  177. Wu L. P., Wang X., Li L., Zhao Y., Lu S., Yu Y., Zhou W., Liu X., Yang J. other authors 2008; Histone deacetylase inhibitor depsipeptide activates silenced genes through decreasing both CpG and H3K9 methylation on the promoter. Mol Cell Biol 28:3219–3235 [View Article][PubMed]
    [Google Scholar]
  178. Yan N., Cherepanov P., Daigle J. E., Engelman A., Lieberman J. 2009; The SET complex acts as a barrier to autointegration of HIV-1. PLoS Pathog 5:e1000327 [View Article][PubMed]
    [Google Scholar]
  179. Yang H. C., Shen L., Siliciano R. F., Pomerantz J. L. 2009a; Isolation of a cellular factor that can reactivate latent HIV-1 without T cell activation. Proc Natl Acad Sci U S A 106:6321–6326 [View Article][PubMed]
    [Google Scholar]
  180. Yang H. C., Xing S., Shan L., O’Connell K., Dinoso J., Shen A., Zhou Y., Shrum C. K., Han Y. other authors 2009b; Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation. J Clin Invest 119:3473–3486[PubMed]
    [Google Scholar]
  181. Yeung M. L., Bennasser Y., Myers T. G., Jiang G., Benkirane M., Jeang K. T. 2005; Changes in microRNA expression profiles in HIV-1-transfected human cells. Retrovirology 2:81 [View Article][PubMed]
    [Google Scholar]
  182. Yeung M. L., Houzet L., Yedavalli V. S., Jeang K. T. 2009a; A genome-wide short hairpin RNA screening of jurkat T-cells for human proteins contributing to productive HIV-1 replication. J Biol Chem 284:19463–19473 [View Article][PubMed]
    [Google Scholar]
  183. Yeung M. L., Bennasser Y., Watashi K., Le S. Y., Houzet L., Jeang K. T. 2009b; Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid. Nucleic Acids Res 37:6575–6586 [View Article][PubMed]
    [Google Scholar]
  184. Ylisastigui L., Archin N. M., Lehrman G., Bosch R. J., Margolis D. M. 2004; Coaxing HIV-1 from resting CD4 T cells: histone deacetylase inhibition allows latent viral expression. AIDS 18:1101–1108 [View Article][PubMed]
    [Google Scholar]
  185. Yukl S., Pillai S., Li P., Chang K., Pasutti W., Ahlgren C., Havlir D., Strain M., Günthard H. other authors 2009; Latently-infected CD4+ T cells are enriched for HIV-1 Tat variants with impaired transactivation activity. Virology 387:98–108 [View Article][PubMed]
    [Google Scholar]
  186. Zamore P. D., Haley B. 2005; Ribo-gnome: the big world of small RNAs. Science 309:1519–1524 [View Article][PubMed]
    [Google Scholar]
  187. Zhao R. Y., Li G., Bukrinsky M. I. 2011; Vpr-host interactions during HIV-1 viral life cycle. J Neuroimmune Pharmacol 6:216–229 [View Article][PubMed]
    [Google Scholar]
  188. Zimmerman E. S., Sherman M. P., Blackett J. L., Neidleman J. A., Kreis C., Mundt P., Williams S. A., Warmerdam M., Kahn J. other authors 2006; Human immunodeficiency virus type 1 Vpr induces DNA replication stress in vitro and in vivo. J Virol 80:10407–10418 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.041186-0
Loading
/content/journal/jgv/10.1099/vir.0.041186-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error