1887

Abstract

Herpesviruses consistently transmit from immunocompetent carriers, implying that their neutralization is hard to achieve. Murid herpesvirus-4 (MuHV-4) exploits host IgG Fc receptors to bypass blocks to cell binding, and pH-dependent protein conformation changes to unveil its fusion machinery only after endocytosis. Nevertheless, neutralization remains possible by targeting the virion glycoprotein H (gH)–gL heterodimer, and the neutralizing antibody responses of MuHV-4 carriers are improved by boosting with recombinant gH–gL. We analysed here how gH–gL-directed neutralization works. The MuHV-4 gH–gL binds to heparan sulfate. However, most gH–gL-specific neutralizing antibodies did not block this interaction; neither did they act directly on fusion. Instead, they blocked virion endocytosis and transport to the late endosomes, where membrane fusion normally occurs. The poor endocytosis of gH–gL-neutralized virions was recapitulated precisely by virions genetically lacking gL. Therefore, driving virion uptake appears to be an important function of gH–gL that provides a major target for antibody-mediated neutralization.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.040790-0
2012-06-01
2023-02-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/6/1316.html?itemId=/content/journal/jgv/10.1099/vir.0.040790-0&mimeType=html&fmt=ahah

References

  1. Barton E., Mandal P., Speck S. H. 2011; Pathogenesis and host control of gammaherpesviruses: lessons from the mouse. Annu Rev Immunol 29:351–397 [View Article][PubMed]
    [Google Scholar]
  2. Chandran B. 2010; Early events in Kaposi’s sarcoma-associated herpesvirus infection of target cells. J Virol 84:2188–2199 [View Article][PubMed]
    [Google Scholar]
  3. Chesnokova L. S., Hutt-Fletcher L. M. 2011; Fusion of Epstein–Barr virus with epithelial cells can be triggered by αvβ5 in addition to αvβ6 and αvβ8, and integrin binding triggers a conformational change in glycoproteins gHgL. J Virol 85:13214–13223 [View Article][PubMed]
    [Google Scholar]
  4. Chesnokova L. S., Nishimura S. L., Hutt-Fletcher L. M. 2009; Fusion of epithelial cells by Epstein–Barr virus proteins is triggered by binding of viral glycoproteins gHgL to integrins αvβ6 or αvβ8. Proc Natl Acad Sci U S A 106:20464–20469 [View Article][PubMed]
    [Google Scholar]
  5. Chowdary T. K., Cairns T. M., Atanasiu D., Cohen G. H., Eisenberg R. J., Heldwein E. E. 2010; Crystal structure of the conserved herpesvirus fusion regulator complex gH–gL. Nat Struct Mol Biol 17:882–888 [View Article][PubMed]
    [Google Scholar]
  6. de Lima B. D., May J. S., Stevenson P. G. 2004; Murine gammaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo. J Virol 78:5103–5112 [View Article][PubMed]
    [Google Scholar]
  7. Dialyna I. A., Graham D., Rezaee R., Blue C. E., Stavrianeas N. G., Neisters H. G., Spandidos D. A., Blackbourn D. J. 2004; Anti-HHV-8/KSHV antibodies in infected individuals inhibit infection in vitro. AIDS 18:1263–1270 [View Article][PubMed]
    [Google Scholar]
  8. Everett R. D., Chelbi-Alix M. K. 2007; PML and PML nuclear bodies: implications in antiviral defence. Biochimie 89:819–830 [View Article][PubMed]
    [Google Scholar]
  9. Forrester A., Farrell H., Wilkinson G., Kaye J., Davis-Poynter N., Minson T. 1992; Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted. J Virol 66:341–348[PubMed]
    [Google Scholar]
  10. Fuller A. O., Santos R. E., Spear P. G. 1989; Neutralizing antibodies specific for glycoprotein H of herpes simplex virus permit viral attachment to cells but prevent penetration. J Virol 63:3435–3443[PubMed]
    [Google Scholar]
  11. Gangappa S., Kapadia S. B., Speck S. H., Virgin H. W. IV 2002; Antibody to a lytic cycle viral protein decreases gammaherpesvirus latency in B-cell-deficient mice. J Virol 76:11460–11468 [View Article][PubMed]
    [Google Scholar]
  12. Gaspar M., Gill M. B., Lösing J. B., May J. S., Stevenson P. G. 2008; Multiple functions for ORF75c in murid herpesvirus-4 infection. PLoS One 3:e2781 [View Article][PubMed]
    [Google Scholar]
  13. Gill M. B., Gillet L., Colaco S., May J. S., de Lima B. D., Stevenson P. G. 2006; Murine gammaherpesvirus-68 glycoprotein H-glycoprotein L complex is a major target for neutralizing monoclonal antibodies. J Gen Virol 87:1465–1475 [View Article][PubMed]
    [Google Scholar]
  14. Gillet L., Stevenson P. G. 2007; Evidence for a multiprotein gamma-2 herpesvirus entry complex. J Virol 81:13082–13091 [View Article][PubMed]
    [Google Scholar]
  15. Gillet L., May J. S., Stevenson P. G. 2007a; Post-exposure vaccination improves gammaherpesvirus neutralization. PLoS One 2:e899 [View Article][PubMed]
    [Google Scholar]
  16. Gillet L., May J. S., Colaco S., Stevenson P. G. 2007b; The murine gammaherpesvirus-68 gp150 acts as an immunogenic decoy to limit virion neutralization. PLoS One 2:e705 [View Article][PubMed]
    [Google Scholar]
  17. Gillet L., Adler H., Stevenson P. G. 2007c; Glycosaminoglycan interactions in murine gammaherpesvirus-68 infection. PLoS One 2:e347 [View Article][PubMed]
    [Google Scholar]
  18. Gillet L., May J. S., Colaco S., Stevenson P. G. 2007d; Glycoprotein L disruption reveals two functional forms of the murine gammaherpesvirus 68 glycoprotein H. J Virol 81:280–291 [View Article][PubMed]
    [Google Scholar]
  19. Gillet L., Colaco S., Stevenson P. G. 2008a; The murid herpesvirus-4 gH/gL binds to glycosaminoglycans. PLoS One 3:e1669 [View Article][PubMed]
    [Google Scholar]
  20. Gillet L., Colaco S., Stevenson P. G. 2008b; The Murid Herpesvirus-4 gL regulates an entry-associated conformation change in gH. PLoS One 3:e2811 [View Article][PubMed]
    [Google Scholar]
  21. Gillet L., Colaco S., Stevenson P. G. 2008c; Glycoprotein B switches conformation during murid herpesvirus 4 entry. J Gen Virol 89:1352–1363 [View Article][PubMed]
    [Google Scholar]
  22. Gillet L., Alenquer M., Glauser D. L., Colaco S., May J. S., Stevenson P. G. 2009; Glycoprotein L sets the neutralization profile of murid herpesvirus 4. J Gen Virol 90:1202–1214 [View Article][PubMed]
    [Google Scholar]
  23. Glauser D. L., Kratz A. S., Gillet L., Stevenson P. G. 2011; A mechanistic basis for potent, glycoprotein B-directed gammaherpesvirus neutralization. J Gen Virol 92:2020–2033 [View Article][PubMed]
    [Google Scholar]
  24. Glauser D. L., Kratz A. S., Stevenson P. G. 2012; Herpesvirus glycoproteins undergo multiple antigenic changes before membrane fusion. PLoS One 7:e30152 [View Article][PubMed]
    [Google Scholar]
  25. Hahn A., Birkmann A., Wies E., Dorer D., Mahr K., Stürzl M., Titgemeyer F., Neipel F. 2009; Kaposi’s sarcoma-associated herpesvirus gH/gL: glycoprotein export and interaction with cellular receptors. J Virol 83:396–407 [View Article][PubMed]
    [Google Scholar]
  26. Hutchinson L., Browne H., Wargent V., Davis-Poynter N., Primorac S., Goldsmith K., Minson A. C., Johnson D. C. 1992; A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. J Virol 66:2240–2250[PubMed]
    [Google Scholar]
  27. Kim I. J., Flaño E., Woodland D. L., Blackman M. A. 2002; Antibody-mediated control of persistent gamma-herpesvirus infection. J Immunol 168:3958–3964[PubMed] [CrossRef]
    [Google Scholar]
  28. Lété C., Machiels B., Stevenson P. G., Vanderplasschen A., Gillet L. 2012; Bovine herpesvirus type 4 glycoprotein L is nonessential for infectivity but triggers virion endocytosis during entry. J Virol 86:2653–2664 [CrossRef]
    [Google Scholar]
  29. Mancini G., Carbonara A. O., Heremans J. F. 1965; Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 2:235–254 [View Article][PubMed]
    [Google Scholar]
  30. May J. S., Stevenson P. G. 2010; Vaccination with murid herpesvirus-4 glycoprotein B reduces viral lytic replication but does not induce detectable virion neutralization. J Gen Virol 91:2542–2552 [View Article][PubMed]
    [Google Scholar]
  31. May J. S., Coleman H. M., Smillie B., Efstathiou S., Stevenson P. G. 2004; Forced lytic replication impairs host colonization by a latency-deficient mutant of murine gammaherpesvirus-68. J Gen Virol 85:137–146 [View Article][PubMed]
    [Google Scholar]
  32. Miller N., Hutt-Fletcher L. M. 1988; A monoclonal antibody to glycoprotein gp85 inhibits fusion but not attachment of Epstein–Barr virus. J Virol 62:2366–2372[PubMed]
    [Google Scholar]
  33. Naranatt P. P., Akula S. M., Chandran B. 2002; Characterization of gamma2-human herpesvirus-8 glycoproteins gH and gL. Arch Virol 147:1349–1370 [View Article][PubMed]
    [Google Scholar]
  34. Parry C., Bell S., Minson T., Browne H. 2005; Herpes simplex virus type 1 glycoprotein H binds to αvβ3 integrins. J Gen Virol 86:7–10 [View Article][PubMed]
    [Google Scholar]
  35. Rosa G. T., Gillet L., Smith C. M., de Lima B. D., Stevenson P. G. 2007; IgG Fc receptors provide an alternative infection route for murine gamma-herpesvirus-68. PLoS One 2:e560 [View Article][PubMed]
    [Google Scholar]
  36. Sokal E. M., Hoppenbrouwers K., Vandermeulen C., Moutschen M., Léonard P., Moreels A., Haumont M., Bollen A., Smets F., Denis M. 2007; Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein–Barr virus vaccine in healthy young adults. J Infect Dis 196:1749–1753 [View Article][PubMed]
    [Google Scholar]
  37. Stevenson P. G., Doherty P. C. 1998; Kinetic analysis of the specific host response to a murine gammaherpesvirus. J Virol 72:943–949[PubMed]
    [Google Scholar]
  38. Stevenson P. G., Simas J. P., Efstathiou S. 2009; Immune control of mammalian gammaherpesviruses: lessons from murid herpesvirus-4. J Gen Virol 90:2317–2330 [View Article][PubMed]
    [Google Scholar]
  39. Thorley-Lawson D. A., Poodry C. A. 1982; Identification and isolation of the main component (gp350–gp220) of Epstein–Barr virus responsible for generating neutralizing antibodies in vivo. J Virol 43:730–736[PubMed]
    [Google Scholar]
  40. Turner A., Bruun B., Minson T., Browne H. 1998; Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system. J Virol 72:873–875[PubMed]
    [Google Scholar]
  41. Wright D. E., Colaco S., Colaco C., Stevenson P. G. 2009; Antibody limits in vivo murid herpesvirus-4 replication by IgG Fc receptor-dependent functions. J Gen Virol 90:2592–2603 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.040790-0
Loading
/content/journal/jgv/10.1099/vir.0.040790-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error