1887

Abstract

Herpesviruses consistently transmit from immunocompetent carriers, implying that their neutralization is hard to achieve. Murid herpesvirus-4 (MuHV-4) exploits host IgG Fc receptors to bypass blocks to cell binding, and pH-dependent protein conformation changes to unveil its fusion machinery only after endocytosis. Nevertheless, neutralization remains possible by targeting the virion glycoprotein H (gH)–gL heterodimer, and the neutralizing antibody responses of MuHV-4 carriers are improved by boosting with recombinant gH–gL. We analysed here how gH–gL-directed neutralization works. The MuHV-4 gH–gL binds to heparan sulfate. However, most gH–gL-specific neutralizing antibodies did not block this interaction; neither did they act directly on fusion. Instead, they blocked virion endocytosis and transport to the late endosomes, where membrane fusion normally occurs. The poor endocytosis of gH–gL-neutralized virions was recapitulated precisely by virions genetically lacking gL. Therefore, driving virion uptake appears to be an important function of gH–gL that provides a major target for antibody-mediated neutralization.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.040790-0
2012-06-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/6/1316.html?itemId=/content/journal/jgv/10.1099/vir.0.040790-0&mimeType=html&fmt=ahah

References

  1. Barton E. , Mandal P. , Speck S. H. . ( 2011; ). Pathogenesis and host control of gammaherpesviruses: lessons from the mouse. . Annu Rev Immunol 29:, 351–397. [CrossRef] [PubMed]
    [Google Scholar]
  2. Chandran B. . ( 2010; ). Early events in Kaposi’s sarcoma-associated herpesvirus infection of target cells. . J Virol 84:, 2188–2199. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chesnokova L. S. , Hutt-Fletcher L. M. . ( 2011; ). Fusion of Epstein–Barr virus with epithelial cells can be triggered by αvβ5 in addition to αvβ6 and αvβ8, and integrin binding triggers a conformational change in glycoproteins gHgL. . J Virol 85:, 13214–13223. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chesnokova L. S. , Nishimura S. L. , Hutt-Fletcher L. M. . ( 2009; ). Fusion of epithelial cells by Epstein–Barr virus proteins is triggered by binding of viral glycoproteins gHgL to integrins αvβ6 or αvβ8. . Proc Natl Acad Sci U S A 106:, 20464–20469. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chowdary T. K. , Cairns T. M. , Atanasiu D. , Cohen G. H. , Eisenberg R. J. , Heldwein E. E. . ( 2010; ). Crystal structure of the conserved herpesvirus fusion regulator complex gH–gL. . Nat Struct Mol Biol 17:, 882–888. [CrossRef] [PubMed]
    [Google Scholar]
  6. de Lima B. D. , May J. S. , Stevenson P. G. . ( 2004; ). Murine gammaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo. . J Virol 78:, 5103–5112. [CrossRef] [PubMed]
    [Google Scholar]
  7. Dialyna I. A. , Graham D. , Rezaee R. , Blue C. E. , Stavrianeas N. G. , Neisters H. G. , Spandidos D. A. , Blackbourn D. J. . ( 2004; ). Anti-HHV-8/KSHV antibodies in infected individuals inhibit infection in vitro. . AIDS 18:, 1263–1270. [CrossRef] [PubMed]
    [Google Scholar]
  8. Everett R. D. , Chelbi-Alix M. K. . ( 2007; ). PML and PML nuclear bodies: implications in antiviral defence. . Biochimie 89:, 819–830. [CrossRef] [PubMed]
    [Google Scholar]
  9. Forrester A. , Farrell H. , Wilkinson G. , Kaye J. , Davis-Poynter N. , Minson T. . ( 1992; ). Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted. . J Virol 66:, 341–348.[PubMed]
    [Google Scholar]
  10. Fuller A. O. , Santos R. E. , Spear P. G. . ( 1989; ). Neutralizing antibodies specific for glycoprotein H of herpes simplex virus permit viral attachment to cells but prevent penetration. . J Virol 63:, 3435–3443.[PubMed]
    [Google Scholar]
  11. Gangappa S. , Kapadia S. B. , Speck S. H. , Virgin H. W. IV . ( 2002; ). Antibody to a lytic cycle viral protein decreases gammaherpesvirus latency in B-cell-deficient mice. . J Virol 76:, 11460–11468. [CrossRef] [PubMed]
    [Google Scholar]
  12. Gaspar M. , Gill M. B. , Lösing J. B. , May J. S. , Stevenson P. G. . ( 2008; ). Multiple functions for ORF75c in murid herpesvirus-4 infection. . PLoS One 3:, e2781. [CrossRef] [PubMed]
    [Google Scholar]
  13. Gill M. B. , Gillet L. , Colaco S. , May J. S. , de Lima B. D. , Stevenson P. G. . ( 2006; ). Murine gammaherpesvirus-68 glycoprotein H-glycoprotein L complex is a major target for neutralizing monoclonal antibodies. . J Gen Virol 87:, 1465–1475. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gillet L. , Stevenson P. G. . ( 2007; ). Evidence for a multiprotein gamma-2 herpesvirus entry complex. . J Virol 81:, 13082–13091. [CrossRef] [PubMed]
    [Google Scholar]
  15. Gillet L. , May J. S. , Stevenson P. G. . ( 2007a; ). Post-exposure vaccination improves gammaherpesvirus neutralization. . PLoS One 2:, e899. [CrossRef] [PubMed]
    [Google Scholar]
  16. Gillet L. , May J. S. , Colaco S. , Stevenson P. G. . ( 2007b; ). The murine gammaherpesvirus-68 gp150 acts as an immunogenic decoy to limit virion neutralization. . PLoS One 2:, e705. [CrossRef] [PubMed]
    [Google Scholar]
  17. Gillet L. , Adler H. , Stevenson P. G. . ( 2007c; ). Glycosaminoglycan interactions in murine gammaherpesvirus-68 infection. . PLoS One 2:, e347. [CrossRef] [PubMed]
    [Google Scholar]
  18. Gillet L. , May J. S. , Colaco S. , Stevenson P. G. . ( 2007d; ). Glycoprotein L disruption reveals two functional forms of the murine gammaherpesvirus 68 glycoprotein H. . J Virol 81:, 280–291. [CrossRef] [PubMed]
    [Google Scholar]
  19. Gillet L. , Colaco S. , Stevenson P. G. . ( 2008a; ). The murid herpesvirus-4 gH/gL binds to glycosaminoglycans. . PLoS One 3:, e1669. [CrossRef] [PubMed]
    [Google Scholar]
  20. Gillet L. , Colaco S. , Stevenson P. G. . ( 2008b; ). The Murid Herpesvirus-4 gL regulates an entry-associated conformation change in gH. . PLoS One 3:, e2811. [CrossRef] [PubMed]
    [Google Scholar]
  21. Gillet L. , Colaco S. , Stevenson P. G. . ( 2008c; ). Glycoprotein B switches conformation during murid herpesvirus 4 entry. . J Gen Virol 89:, 1352–1363. [CrossRef] [PubMed]
    [Google Scholar]
  22. Gillet L. , Alenquer M. , Glauser D. L. , Colaco S. , May J. S. , Stevenson P. G. . ( 2009; ). Glycoprotein L sets the neutralization profile of murid herpesvirus 4. . J Gen Virol 90:, 1202–1214. [CrossRef] [PubMed]
    [Google Scholar]
  23. Glauser D. L. , Kratz A. S. , Gillet L. , Stevenson P. G. . ( 2011; ). A mechanistic basis for potent, glycoprotein B-directed gammaherpesvirus neutralization. . J Gen Virol 92:, 2020–2033. [CrossRef] [PubMed]
    [Google Scholar]
  24. Glauser D. L. , Kratz A. S. , Stevenson P. G. . ( 2012; ). Herpesvirus glycoproteins undergo multiple antigenic changes before membrane fusion. . PLoS One 7:, e30152. [CrossRef] [PubMed]
    [Google Scholar]
  25. Hahn A. , Birkmann A. , Wies E. , Dorer D. , Mahr K. , Stürzl M. , Titgemeyer F. , Neipel F. . ( 2009; ). Kaposi’s sarcoma-associated herpesvirus gH/gL: glycoprotein export and interaction with cellular receptors. . J Virol 83:, 396–407. [CrossRef] [PubMed]
    [Google Scholar]
  26. Hutchinson L. , Browne H. , Wargent V. , Davis-Poynter N. , Primorac S. , Goldsmith K. , Minson A. C. , Johnson D. C. . ( 1992; ). A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. . J Virol 66:, 2240–2250.[PubMed]
    [Google Scholar]
  27. Kim I. J. , Flaño E. , Woodland D. L. , Blackman M. A. . ( 2002; ). Antibody-mediated control of persistent gamma-herpesvirus infection. . J Immunol 168:, 3958–3964.[PubMed] [CrossRef]
    [Google Scholar]
  28. Lété C. , Machiels B. , Stevenson P. G. , Vanderplasschen A. , Gillet L. . ( 2012; ). Bovine herpesvirus type 4 glycoprotein L is nonessential for infectivity but triggers virion endocytosis during entry. . J Virol 86:, 2653–2664.[CrossRef]
    [Google Scholar]
  29. Mancini G. , Carbonara A. O. , Heremans J. F. . ( 1965; ). Immunochemical quantitation of antigens by single radial immunodiffusion. . Immunochemistry 2:, 235–254. [CrossRef] [PubMed]
    [Google Scholar]
  30. May J. S. , Stevenson P. G. . ( 2010; ). Vaccination with murid herpesvirus-4 glycoprotein B reduces viral lytic replication but does not induce detectable virion neutralization. . J Gen Virol 91:, 2542–2552. [CrossRef] [PubMed]
    [Google Scholar]
  31. May J. S. , Coleman H. M. , Smillie B. , Efstathiou S. , Stevenson P. G. . ( 2004; ). Forced lytic replication impairs host colonization by a latency-deficient mutant of murine gammaherpesvirus-68. . J Gen Virol 85:, 137–146. [CrossRef] [PubMed]
    [Google Scholar]
  32. Miller N. , Hutt-Fletcher L. M. . ( 1988; ). A monoclonal antibody to glycoprotein gp85 inhibits fusion but not attachment of Epstein–Barr virus. . J Virol 62:, 2366–2372.[PubMed]
    [Google Scholar]
  33. Naranatt P. P. , Akula S. M. , Chandran B. . ( 2002; ). Characterization of gamma2-human herpesvirus-8 glycoproteins gH and gL. . Arch Virol 147:, 1349–1370. [CrossRef] [PubMed]
    [Google Scholar]
  34. Parry C. , Bell S. , Minson T. , Browne H. . ( 2005; ). Herpes simplex virus type 1 glycoprotein H binds to αvβ3 integrins. . J Gen Virol 86:, 7–10. [CrossRef] [PubMed]
    [Google Scholar]
  35. Rosa G. T. , Gillet L. , Smith C. M. , de Lima B. D. , Stevenson P. G. . ( 2007; ). IgG Fc receptors provide an alternative infection route for murine gamma-herpesvirus-68. . PLoS One 2:, e560. [CrossRef] [PubMed]
    [Google Scholar]
  36. Sokal E. M. , Hoppenbrouwers K. , Vandermeulen C. , Moutschen M. , Léonard P. , Moreels A. , Haumont M. , Bollen A. , Smets F. , Denis M. . ( 2007; ). Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein–Barr virus vaccine in healthy young adults. . J Infect Dis 196:, 1749–1753. [CrossRef] [PubMed]
    [Google Scholar]
  37. Stevenson P. G. , Doherty P. C. . ( 1998; ). Kinetic analysis of the specific host response to a murine gammaherpesvirus. . J Virol 72:, 943–949.[PubMed]
    [Google Scholar]
  38. Stevenson P. G. , Simas J. P. , Efstathiou S. . ( 2009; ). Immune control of mammalian gammaherpesviruses: lessons from murid herpesvirus-4. . J Gen Virol 90:, 2317–2330. [CrossRef] [PubMed]
    [Google Scholar]
  39. Thorley-Lawson D. A. , Poodry C. A. . ( 1982; ). Identification and isolation of the main component (gp350–gp220) of Epstein–Barr virus responsible for generating neutralizing antibodies in vivo. . J Virol 43:, 730–736.[PubMed]
    [Google Scholar]
  40. Turner A. , Bruun B. , Minson T. , Browne H. . ( 1998; ). Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system. . J Virol 72:, 873–875.[PubMed]
    [Google Scholar]
  41. Wright D. E. , Colaco S. , Colaco C. , Stevenson P. G. . ( 2009; ). Antibody limits in vivo murid herpesvirus-4 replication by IgG Fc receptor-dependent functions. . J Gen Virol 90:, 2592–2603. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.040790-0
Loading
/content/journal/jgv/10.1099/vir.0.040790-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error