Development of hepatitis C virus production reporter-assay systems using two different hepatoma cell lines Free

Abstract

A hepatitis C virus (HCV) infection system was developed previously using the HCV JFH-1 strain (genotype 2a) and HuH-7 cells, and this cell culture is so far the only robust production system for HCV. In patients with chronic hepatitis C, the virological effects of pegylated interferon and ribavirin therapy differ depending on the HCV strain and the genetic background of the host. Recently, we reported the hepatoma-derived Li23 cell line, in which the JFH-1 life cycle is reproduced at a level almost equal to that in HuH-7-derived RSc cells. To monitor the HCV life cycle more easily, we here developed JFH-1 reporter-assay systems using both HuH-7- and Li23-derived cell lines. To identify any genetic mutations by long-term cell culture, HCV RNAs in HuH-7 cells were amplified 130 days after infection and subjected to sequence analysis to find adaptive mutation(s) for robust virus replication. We identified two mutations, H2505Q and V2995L, in the NS5B region. V2995L but not H2505Q enhanced JFH-1 RNA replication. However, we found that H2505Q but not V2995L enhanced HCV RNA replication of strain O (genotype 1b). We also selected highly permissive D7 cells by serial subcloning of Li23 cells. The expression levels of claudin-1 and Niemann–Pick C1-like 1 in D7 cells are higher than those in parental Li23 cells. In this study, we developed HCV JFH-1 reporter-assay systems using two distinct hepatoma cell lines, HuH-7 and Li23. The mutations in NS5B resulted in different effects on strains O and JFH-1 HCV RNA replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.040725-0
2012-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/7/1422.html?itemId=/content/journal/jgv/10.1099/vir.0.040725-0&mimeType=html&fmt=ahah

References

  1. Abe K., Ikeda M., Dansako H., Naka K., Kato N. 2007; Cell culture-adaptive NS3 mutations required for the robust replication of genome-length hepatitis C virus RNA. Virus Res 125:88–97 [View Article][PubMed]
    [Google Scholar]
  2. Ariumi Y., Kuroki M., Abe K., Dansako H., Ikeda M., Wakita T., Kato N. 2007; DDX3 DEAD-box RNA helicase is required for hepatitis C virus RNA replication. J Virol 81:13922–13926 [View Article][PubMed]
    [Google Scholar]
  3. Blight K. J., McKeating J. A., Rice C. M. 2002; Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 76:13001–13014[PubMed] [CrossRef]
    [Google Scholar]
  4. Ikeda M., Yi M., Li K., Lemon S. M. 2002; Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. J Virol 76:2997–3006[PubMed] [CrossRef]
    [Google Scholar]
  5. Ikeda M., Abe K., Dansako H., Nakamura T., Naka K., Kato N. 2005; Efficient replication of a full-length hepatitis C virus genome, strain O, in cell culture, and development of a luciferase reporter system. Biochem Biophys Res Commun 329:1350–1359 [View Article][PubMed]
    [Google Scholar]
  6. Kambara H., Fukuhara T., Shiokawa M., Ono C., Ohara Y., Kamitani W., Matsuura Y. 2012; Establishment of a novel permissive cell line for the propagation of hepatitis C virus by expression of microRNA miR122. J Virol 86:1382–1393 [CrossRef]
    [Google Scholar]
  7. Kato N. 2001; Molecular virology of hepatitis C virus. Acta Med Okayama 55:133–159[PubMed]
    [Google Scholar]
  8. Kato N., Hijikata M., Ootsuyama Y., Nakagawa M., Ohkoshi S., Sugimura T., Shimotohno K. 1990; Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc Natl Acad Sci U S A 87:9524–9528[PubMed] [CrossRef]
    [Google Scholar]
  9. Kato N., Sugiyama K., Namba K., Dansako H., Nakamura T., Takami M., Naka K., Nozaki A., Shimotohno K. 2003; Establishment of a hepatitis C virus subgenomic replicon derived from human hepatocytes infected in vitro. Biochem Biophys Res Commun 306:756–766 [View Article][PubMed]
    [Google Scholar]
  10. Kato T., Choi Y., Elmowalid G., Sapp R. K., Barth H., Furusaka A., Mishiro S., Wakita T., Krawczynski K., Liang T. J. 2008; Hepatitis C virus JFH-1 strain infection in chimpanzees is associated with low pathogenicity and emergence of an adaptive mutation. Hepatology 48:732–740 [View Article][PubMed]
    [Google Scholar]
  11. Kato N., Mori K., Abe K., Dansako H., Kuroki M., Ariumi Y., Wakita T., Ikeda M. 2009; Efficient replication systems for hepatitis C virus using a new human hepatoma cell line. Virus Res 146:41–50 [View Article][PubMed]
    [Google Scholar]
  12. Koutsoudakis G., Kaul A., Steinmann E., Kallis S., Lohmann V., Pietschmann T., Bartenschlager R. 2006; Characterization of the early steps of hepatitis C virus infection by using luciferase reporter viruses. J Virol 80:5308–5320 [View Article][PubMed]
    [Google Scholar]
  13. Lindenbach B. D., Evans M. J., Syder A. J., Wölk B., Tellinghuisen T. L., Liu C. C., Maruyama T., Hynes R. O., Burton D. R. other authors 2005; Complete replication of hepatitis C virus in cell culture. Science 309:623–626 [View Article][PubMed]
    [Google Scholar]
  14. Lohmann V., Körner F., Koch J., Herian U., Theilmann L., Bartenschlager R. 1999; Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285:110–113 [View Article][PubMed]
    [Google Scholar]
  15. Lohmann V., Körner F., Dobierzewska A., Bartenschlager R. 2001; Mutations in hepatitis C virus RNAs conferring cell culture adaptation. J Virol 75:1437–1449[PubMed] [CrossRef]
    [Google Scholar]
  16. Marcello T., Grakoui A., Barba-Spaeth G., Machlin E. S., Kotenko S. V., MacDonald M. R., Rice C. M. 2006; Interferons α and λ inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 131:1887–1898 [View Article][PubMed]
    [Google Scholar]
  17. Masaki T., Suzuki R., Murakami K., Aizaki H., Ishii K., Murayama A., Date T., Matsuura Y., Miyamura T. other authors 2008; Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles. J Virol 82:7964–7976 [View Article][PubMed]
    [Google Scholar]
  18. Mori K., Ikeda M., Ariumi Y., Kato N. 2010; Gene expression profile of Li23, a new human hepatoma cell line that enables robust hepatitis C virus replication: comparison with HuH-7 and other hepatic cell lines. Hepatol Res 40:1248–1253 [CrossRef]
    [Google Scholar]
  19. Mori K., Ikeda M., Ariumi Y., Dansako H., Wakita T., Kato N. 2011; Mechanism of action of ribavirin in a novel hepatitis C virus replication cell system. Virus Res 157:61–70[PubMed] [CrossRef]
    [Google Scholar]
  20. Narbus C. M., Israelow B., Sourisseau M., Michta M. L., Hopcraft S. E., Zeiner G. M., Evans M. J. 2011; HepG2 cells expressing microRNA miR-122 support the entire hepatitis C virus life cycle. J Virol 85:12087–12092 [CrossRef]
    [Google Scholar]
  21. Nakamuta M., Fujino T., Yada R., Aoyagi Y., Yasutake K., Kohjima M., Fukuizumi K., Yoshimoto T., Harada N. other authors 2011; Expression profiles of genes associated with viral entry in HCV-infected human liver. J Med Virol 83:921–927 [View Article][PubMed]
    [Google Scholar]
  22. Nishimura G., Ikeda M., Mori K., Nakazawa T., Ariumi Y., Dansako H., Kato N. 2009; Replicons from genotype 1b HCV-positive sera exhibit diverse sensitivities to anti-HCV reagents. Antiviral Res 82:42–50 [View Article][PubMed]
    [Google Scholar]
  23. Pietschmann T., Lohmann V., Kaul A., Krieger N., Rinck G., Rutter G., Strand D., Bartenschlager R. 2002; Persistent and transient replication of full-length hepatitis C virus genomes in cell culture. J Virol 76:4008–4021[PubMed] [CrossRef]
    [Google Scholar]
  24. Pietschmann T., Zayas M., Meuleman P., Long G., Appel N., Koutsoudakis G., Kallis S., Leroux-Roels G., Lohmann V., Bartenschlager R. 2009; Production of infectious genotype 1b virus particles in cell culture and impairment by replication enhancing mutations. PLoS Pathog 5:e1000475 [View Article][PubMed]
    [Google Scholar]
  25. Sainz B. Jr, Barretto N., Martin D. N., Hiraga N., Imamura M., Hussain S., Marsh K. A., Yu X., Chayama K. other authors 2012; Identification of the Niemann–Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med 18:281–285[PubMed] [CrossRef]
    [Google Scholar]
  26. Tanaka T., Kato N., Cho M. J., Sugiyama K., Shimotohno K. 1996; Structure of the 3′ terminus of the hepatitis C virus genome. J Virol 70:3307–3312[PubMed]
    [Google Scholar]
  27. Tellinghuisen T. L., Foss K. L., Treadaway J. 2008; Regulation of hepatitis C virion production via phosphorylation of the NS5A protein. PLoS Pathog 4:e1000032[PubMed] [CrossRef]
    [Google Scholar]
  28. Ueda Y., Mori K., Ariumi Y., Ikeda M., Kato N. 2011; Plural assay systems derived from different cell lines and hepatitis C virus strains are required for the objective evaluation of anti-hepatitis C virus reagents. Biochem Biophys Res Commun 409:663–668[PubMed] [CrossRef]
    [Google Scholar]
  29. Wakita T., Pietschmann T., Kato T., Date T., Miyamoto M., Zhao Z., Murthy K., Habermann A., Kräusslich H. G. other authors 2005; Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11:791–796[PubMed] [CrossRef]
    [Google Scholar]
  30. Zhong J., Gastaminza P., Cheng G., Kapadia S., Kato T., Burton D. R., Wieland S. F., Uprichard S. L., Wakita T., Chisari F. V. 2005; Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A 102:9294–9299[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.040725-0
Loading
/content/journal/jgv/10.1099/vir.0.040725-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed