Novel microRNAs encoded by duck enteritis virus Free

Abstract

Duck enteritis virus (DEV) is an important herpesvirus pathogen associated with acute, highly contagious lethal disease in waterfowls. Using a deep sequencing approach on RNA from infected chicken embryo fibroblast cultures, we identified several novel DEV-encoded micro (mi)RNAs. Unlike most mardivirus-encoded miRNAs, DEV-encoded miRNAs mapped mostly to the unique long region of the genome. The precursors of DEV miR-D18 and miR-D19 overlapped with each other, suggesting similarities to miRNA-offset RNAs, although only the DEV-miR-D18-3p was functional in reporter assays. Identification of these novel miRNAs will add to the growing list of virus-encoded miRNAs enabling the exploration of their roles in pathogenesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.040634-0
2012-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/7/1530.html?itemId=/content/journal/jgv/10.1099/vir.0.040634-0&mimeType=html&fmt=ahah

References

  1. Babiarz J. E., Ruby J. G., Wang Y., Bartel D. P., Blelloch R. 2008; Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, dicer-dependent small RNAs. Genes Dev 22:2773–2785 [View Article][PubMed]
    [Google Scholar]
  2. Barqasho B., Nowak P., Abdurahman S., Walther-Jallow L., Sönnerborg A. 2010; Implications of the release of high-mobility group box 1 protein from dying cells during human immunodeficiency virus type 1 infection in vitro. J Gen Virol 91:1800–1809 [View Article][PubMed]
    [Google Scholar]
  3. Bartel D. P. 2009; MicroRNAs: target recognition and regulatory functions. Cell 136:215–233 [View Article][PubMed]
    [Google Scholar]
  4. Barth S., Pfuhl T., Mamiani A., Ehses C., Roemer K., Kremmer E., Jäker C., Höck J., Meister G., Grässer F. A. 2008; Epstein–Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res 36:666–675 [View Article][PubMed]
    [Google Scholar]
  5. Borde C., Barnay-Verdier S., Gaillard C., Hocini H., Maréchal V., Gozlan J. 2011; Stepwise release of biologically active HMGB1 during HSV-2 infection. PLoS ONE 6:e16145 [View Article][PubMed]
    [Google Scholar]
  6. Burnside J., Morgan R. 2011; Emerging roles of chicken and viral microRNAs in avian disease. BMC Proc 5:Suppl. 4S2 [View Article][PubMed]
    [Google Scholar]
  7. Burnside J., Bernberg E., Anderson A., Lu C., Meyers B. C., Green P. J., Jain N., Isaacs G., Morgan R. W. 2006; Marek’s disease virus encodes microRNAs that map to meq and the latency-associated transcript. J Virol 80:8778–8786 [View Article][PubMed]
    [Google Scholar]
  8. Carter C. J. 2009; Schizophrenia susceptibility genes directly implicated in the life cycles of pathogens: cytomegalovirus, influenza, herpes simplex, rubella, and toxoplasma gondii. Schizophr Bull 35:1163–1182 [View Article][PubMed]
    [Google Scholar]
  9. Chen L. C., Yeh T. M., Wu H. N., Lin Y. Y., Shyu H. W. 2008; Dengue virus infection induces passive release of high mobility group box 1 protein by epithelial cells. J Infect 56:143–150 [View Article][PubMed]
    [Google Scholar]
  10. Chu J. J., Ng M. L. 2003; The mechanism of cell death during West Nile virus infection is dependent on initial infectious dose. J Gen Virol 84:3305–3314 [View Article][PubMed]
    [Google Scholar]
  11. Cullen B. R. 2009; Viral and cellular messenger RNA targets of viral microRNAs. Nature 457:421–425 [View Article][PubMed]
    [Google Scholar]
  12. Cullen B. R. 2011; Viruses and microRNAs: RISCy interactions with serious consequences. Genes Dev 25:1881–1894 [View Article][PubMed]
    [Google Scholar]
  13. Eisen M. B., Spellman P. T., Brown P. O., Botstein D. 1998; Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:14863–14868 [View Article][PubMed]
    [Google Scholar]
  14. Gao W., He W., Zhao K., Lu H., Ren W., Du C., Chen K., Lan Y., Song D., Gao F. 2010; Identification of NCAM that interacts with the PHE-CoV spike protein. Virol J 7:254 [View Article][PubMed]
    [Google Scholar]
  15. Gottwein E., Cullen B. R. 2008; Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 3:375–387 [View Article][PubMed]
    [Google Scholar]
  16. Han J., Lee Y., Yeom K. H., Nam J. W., Heo I., Rhee J. K., Sohn S. Y., Cho Y., Zhang B. T., Kim V. N. 2006; Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901 [View Article][PubMed]
    [Google Scholar]
  17. Jung J. H., Park J. H., Jee M. H., Keum S. J., Cho M. S., Yoon S. K., Jang S. K. 2011; Hepatitis C virus infection is blocked by HMGB1 released from virus-infected cells. J Virol 85:9359–9368 [View Article][PubMed]
    [Google Scholar]
  18. Jurak I., Kramer M. F., Mellor J. C., van Lint A. L., Roth F. P., Knipe D. M., Coen D. M. 2010; Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2. J Virol 84:4659–4672 [View Article][PubMed]
    [Google Scholar]
  19. Kamau E., Takhampunya R., Li T., Kelly E., Peachman K. K., Lynch J. A., Sun P., Palmer D. R. 2009; Dengue virus infection promotes translocation of high mobility group box 1 protein from the nucleus to the cytosol in dendritic cells, upregulates cytokine production and modulates virus replication. J Gen Virol 90:1827–1835 [View Article][PubMed]
    [Google Scholar]
  20. Lan D., Tang C., Li M., Yue H. 2010; Screening and identification of differentially expressed genes from chickens infected with Newcastle disease virus by suppression subtractive hybridization. Avian Pathol 39:151–159 [View Article][PubMed]
    [Google Scholar]
  21. Lindsay M. A. 2008; microRNAs and the immune response. Trends Immunol 29:343–351 [View Article][PubMed]
    [Google Scholar]
  22. Morgan R., Anderson A., Bernberg E., Kamboj S., Huang E., Lagasse G., Isaacs G., Parcells M., Meyers B. C.other authors 2008; Sequence conservation and differential expression of Marek’s disease virus microRNAs. J Virol 82:12213–12220 [View Article][PubMed]
    [Google Scholar]
  23. Morin R. D., O’Connor M. D., Griffith M., Kuchenbauer F., Delaney A., Prabhu A. L., Zhao Y., McDonald H., Zeng T.other authors 2008; Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18:610–621 [View Article][PubMed]
    [Google Scholar]
  24. Rachamadugu R., Lee J. Y., Wooming A., Kong B. W. 2009; Identification and expression analysis of infectious laryngotracheitis virus encoding microRNAs. Virus Genes 39:301–308 [View Article][PubMed]
    [Google Scholar]
  25. Ruby J. G., Stark A., Johnston W. K., Kellis M., Bartel D. P., Lai E. C. 2007; Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res 17:1850–1864 [View Article][PubMed]
    [Google Scholar]
  26. Seo G. J., Fink L. H., O’Hara B., Atwood W. J., Sullivan C. S. 2008; Evolutionarily conserved function of a viral microRNA. J Virol 82:9823–9828 [View Article][PubMed]
    [Google Scholar]
  27. Seo G. J., Chen C. J., Sullivan C. S. 2009; Merkel cell polyomavirus encodes a microRNA with the ability to autoregulate viral gene expression. Virology 383:183–187 [View Article][PubMed]
    [Google Scholar]
  28. Shi W., Hendrix D., Levine M., Haley B. 2009; A distinct class of small RNAs arises from pre-miRNA-proximal regions in a simple chordate. Nat Struct Mol Biol 16:183–189 [View Article][PubMed]
    [Google Scholar]
  29. Sullivan C. S., Grundhoff A. T., Tevethia S., Pipas J. M., Ganem D. 2005; SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435:682–686 [View Article][PubMed]
    [Google Scholar]
  30. Tang S., Bertke A. S., Patel A., Wang K., Cohen J. I., Krause P. R. 2008; An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor. Proc Natl Acad Sci U S A 105:10931–10936 [View Article][PubMed]
    [Google Scholar]
  31. Tang S., Patel A., Krause P. R. 2009; Novel less-abundant viral microRNAs encoded by herpes simplex virus 2 latency-associated transcript and their roles in regulating ICP34.5 and ICP0 mRNAs. J Virol 83:1433–1442 [View Article][PubMed]
    [Google Scholar]
  32. Umbach J. L., Cullen B. R. 2010; In-depth analysis of Kaposi’s sarcoma-associated herpesvirus microRNA expression provides insights into the mammalian microRNA-processing machinery. J Virol 84:695–703 [View Article][PubMed]
    [Google Scholar]
  33. Umbach J. L., Strelow L. I., Wong S. W., Cullen B. R. 2010; Analysis of rhesus rhadinovirus microRNAs expressed in virus-induced tumors from infected rhesus macaques. Virology 405:592–599 [View Article][PubMed]
    [Google Scholar]
  34. Waidner L. A., Morgan R. W., Anderson A. S., Bernberg E. L., Kamboj S., Garcia M., Riblet S. M., Ouyang M., Isaacs G. K.other authors 2009; MicroRNAs of Gallid and Meleagrid herpesviruses show generally conserved genomic locations and are virus-specific. Virology 388:128–136 [View Article][PubMed]
    [Google Scholar]
  35. Waidner L. A., Burnside J., Anderson A. S., Bernberg E. L., German M. A., Meyers B. C., Green P. J., Morgan R. W. 2011; A microRNA of infectious laryngotracheitis virus can downregulate and direct cleavage of ICP4 mRNA. Virology 411:25–31 [View Article][PubMed]
    [Google Scholar]
  36. Wang J., Osterrieder N. 2011; Generation of an infectious clone of duck enteritis virus (DEV) and of a vectored DEV expressing hemagglutinin of H5N1 avian influenza virus. Virus Res 159:23–31 [View Article][PubMed]
    [Google Scholar]
  37. Wang H., Ward M. F., Fan X. G., Sama A. E., Li W. 2006; Potential role of high mobility group box 1 in viral infectious diseases. Viral Immunol 19:3–9 [View Article][PubMed]
    [Google Scholar]
  38. Wang Y., Brahmakshatriya V., Zhu H., Lupiani B., Reddy S. M., Yoon B. J., Gunaratne P. H., Kim J. H., Chen R.other authors 2009; Identification of differentially expressed miRNAs in chicken lung and trachea with avian influenza virus infection by a deep sequencing approach. BMC Genomics 10:512 [View Article][PubMed]
    [Google Scholar]
  39. Wang J., Höper D., Beer M., Osterrieder N. 2011; Complete genome sequence of virulent duck enteritis virus (DEV) strain 2085 and comparison with genome sequences of virulent and attenuated DEV strains. Virus Res 160:316–325 [View Article][PubMed]
    [Google Scholar]
  40. Xu H., Yao Y., Zhao Y., Smith L. P., Baigent S. J., Nair V. 2008; Analysis of the expression profiles of Marek’s disease virus-encoded microRNAs by real-time quantitative PCR. J Virol Methods 149:201–208 [View Article][PubMed]
    [Google Scholar]
  41. Yao Y., Zhao Y., Xu H., Smith L. P., Lawrie C. H., Sewer A., Zavolan M., Nair V. 2007; Marek’s disease virus type 2 (MDV-2)-encoded microRNAs show no sequence conservation with those encoded by MDV-1. J Virol 81:7164–7170 [View Article][PubMed]
    [Google Scholar]
  42. Yao Y., Zhao Y., Xu H., Smith L. P., Lawrie C. H., Watson M., Nair V. 2008; MicroRNA profile of Marek’s disease virus-transformed T-cell line MSB-1: predominance of virus-encoded microRNAs. J Virol 82:4007–4015 [View Article][PubMed]
    [Google Scholar]
  43. Yao Y., Zhao Y., Smith L. P., Watson M., Nair V. 2009; Novel microRNAs (miRNAs) encoded by herpesvirus of turkeys: evidence of miRNA evolution by duplication. J Virol 83:6969–6973 [View Article][PubMed]
    [Google Scholar]
  44. Zhao Y., Yao Y., Xu H., Lambeth L., Smith L. P., Kgosana L., Wang X., Nair V. 2009; A functional microRNA-155 ortholog encoded by the oncogenic Marek’s disease virus. J Virol 83:489–492 [View Article][PubMed]
    [Google Scholar]
  45. Zhao Y., Xu H., Yao Y., Smith L. P., Kgosana L., Green J., Petherbridge L., Baigent S. J., Nair V. 2011; Critical role of the virus-encoded microRNA-155 ortholog in the induction of Marek’s disease lymphomas. PLoS Pathog 7:e1001305 [View Article][PubMed]
    [Google Scholar]
  46. Zhong Z., Chai T., Duan H., Miao Z., Li X., Yao M., Yuan W., Wang W., Li Q.other authors 2009; REP-PCR tracking of the origin and spread of airborne Staphylococcus aureus in and around chicken house. Indoor Air 19:511–516 [View Article][PubMed]
    [Google Scholar]
  47. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.040634-0
Loading
/content/journal/jgv/10.1099/vir.0.040634-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed