1887

Abstract

Duck enteritis virus (DEV) is an important herpesvirus pathogen associated with acute, highly contagious lethal disease in waterfowls. Using a deep sequencing approach on RNA from infected chicken embryo fibroblast cultures, we identified several novel DEV-encoded micro (mi)RNAs. Unlike most mardivirus-encoded miRNAs, DEV-encoded miRNAs mapped mostly to the unique long region of the genome. The precursors of DEV miR-D18 and miR-D19 overlapped with each other, suggesting similarities to miRNA-offset RNAs, although only the DEV-miR-D18-3p was functional in reporter assays. Identification of these novel miRNAs will add to the growing list of virus-encoded miRNAs enabling the exploration of their roles in pathogenesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.040634-0
2012-07-01
2019-12-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/7/1530.html?itemId=/content/journal/jgv/10.1099/vir.0.040634-0&mimeType=html&fmt=ahah

References

  1. Babiarz J. E., Ruby J. G., Wang Y., Bartel D. P., Blelloch R.. ( 2008;). Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, dicer-dependent small RNAs. . Genes Dev 22:, 2773–2785. [CrossRef][PubMed]
    [Google Scholar]
  2. Barqasho B., Nowak P., Abdurahman S., Walther-Jallow L., Sönnerborg A.. ( 2010;). Implications of the release of high-mobility group box 1 protein from dying cells during human immunodeficiency virus type 1 infection in vitro. . J Gen Virol 91:, 1800–1809. [CrossRef][PubMed]
    [Google Scholar]
  3. Bartel D. P.. ( 2009;). MicroRNAs: target recognition and regulatory functions. . Cell 136:, 215–233. [CrossRef][PubMed]
    [Google Scholar]
  4. Barth S., Pfuhl T., Mamiani A., Ehses C., Roemer K., Kremmer E., Jäker C., Höck J., Meister G., Grässer F. A.. ( 2008;). Epstein–Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. . Nucleic Acids Res 36:, 666–675. [CrossRef][PubMed]
    [Google Scholar]
  5. Borde C., Barnay-Verdier S., Gaillard C., Hocini H., Maréchal V., Gozlan J.. ( 2011;). Stepwise release of biologically active HMGB1 during HSV-2 infection. . PLoS ONE 6:, e16145. [CrossRef][PubMed]
    [Google Scholar]
  6. Burnside J., Morgan R.. ( 2011;). Emerging roles of chicken and viral microRNAs in avian disease. . BMC Proc 5: (Suppl. 4), S2. [CrossRef][PubMed]
    [Google Scholar]
  7. Burnside J., Bernberg E., Anderson A., Lu C., Meyers B. C., Green P. J., Jain N., Isaacs G., Morgan R. W.. ( 2006;). Marek’s disease virus encodes microRNAs that map to meq and the latency-associated transcript. . J Virol 80:, 8778–8786. [CrossRef][PubMed]
    [Google Scholar]
  8. Carter C. J.. ( 2009;). Schizophrenia susceptibility genes directly implicated in the life cycles of pathogens: cytomegalovirus, influenza, herpes simplex, rubella, and toxoplasma gondii. . Schizophr Bull 35:, 1163–1182. [CrossRef][PubMed]
    [Google Scholar]
  9. Chen L. C., Yeh T. M., Wu H. N., Lin Y. Y., Shyu H. W.. ( 2008;). Dengue virus infection induces passive release of high mobility group box 1 protein by epithelial cells. . J Infect 56:, 143–150. [CrossRef][PubMed]
    [Google Scholar]
  10. Chu J. J., Ng M. L.. ( 2003;). The mechanism of cell death during West Nile virus infection is dependent on initial infectious dose. . J Gen Virol 84:, 3305–3314. [CrossRef][PubMed]
    [Google Scholar]
  11. Cullen B. R.. ( 2009;). Viral and cellular messenger RNA targets of viral microRNAs. . Nature 457:, 421–425. [CrossRef][PubMed]
    [Google Scholar]
  12. Cullen B. R.. ( 2011;). Viruses and microRNAs: RISCy interactions with serious consequences. . Genes Dev 25:, 1881–1894. [CrossRef][PubMed]
    [Google Scholar]
  13. Eisen M. B., Spellman P. T., Brown P. O., Botstein D.. ( 1998;). Cluster analysis and display of genome-wide expression patterns. . Proc Natl Acad Sci U S A 95:, 14863–14868. [CrossRef][PubMed]
    [Google Scholar]
  14. Gao W., He W., Zhao K., Lu H., Ren W., Du C., Chen K., Lan Y., Song D., Gao F.. ( 2010;). Identification of NCAM that interacts with the PHE-CoV spike protein. . Virol J 7:, 254. [CrossRef][PubMed]
    [Google Scholar]
  15. Gottwein E., Cullen B. R.. ( 2008;). Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. . Cell Host Microbe 3:, 375–387. [CrossRef][PubMed]
    [Google Scholar]
  16. Han J., Lee Y., Yeom K. H., Nam J. W., Heo I., Rhee J. K., Sohn S. Y., Cho Y., Zhang B. T., Kim V. N.. ( 2006;). Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. . Cell 125:, 887–901. [CrossRef][PubMed]
    [Google Scholar]
  17. Jung J. H., Park J. H., Jee M. H., Keum S. J., Cho M. S., Yoon S. K., Jang S. K.. ( 2011;). Hepatitis C virus infection is blocked by HMGB1 released from virus-infected cells. . J Virol 85:, 9359–9368. [CrossRef][PubMed]
    [Google Scholar]
  18. Jurak I., Kramer M. F., Mellor J. C., van Lint A. L., Roth F. P., Knipe D. M., Coen D. M.. ( 2010;). Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2. . J Virol 84:, 4659–4672. [CrossRef][PubMed]
    [Google Scholar]
  19. Kamau E., Takhampunya R., Li T., Kelly E., Peachman K. K., Lynch J. A., Sun P., Palmer D. R.. ( 2009;). Dengue virus infection promotes translocation of high mobility group box 1 protein from the nucleus to the cytosol in dendritic cells, upregulates cytokine production and modulates virus replication. . J Gen Virol 90:, 1827–1835. [CrossRef][PubMed]
    [Google Scholar]
  20. Lan D., Tang C., Li M., Yue H.. ( 2010;). Screening and identification of differentially expressed genes from chickens infected with Newcastle disease virus by suppression subtractive hybridization. . Avian Pathol 39:, 151–159. [CrossRef][PubMed]
    [Google Scholar]
  21. Lindsay M. A.. ( 2008;). microRNAs and the immune response. . Trends Immunol 29:, 343–351. [CrossRef][PubMed]
    [Google Scholar]
  22. Morgan R., Anderson A., Bernberg E., Kamboj S., Huang E., Lagasse G., Isaacs G., Parcells M., Meyers B. C.. & other authors ( 2008;). Sequence conservation and differential expression of Marek’s disease virus microRNAs. . J Virol 82:, 12213–12220. [CrossRef][PubMed]
    [Google Scholar]
  23. Morin R. D., O’Connor M. D., Griffith M., Kuchenbauer F., Delaney A., Prabhu A. L., Zhao Y., McDonald H., Zeng T.. & other authors ( 2008;). Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. . Genome Res 18:, 610–621. [CrossRef][PubMed]
    [Google Scholar]
  24. Rachamadugu R., Lee J. Y., Wooming A., Kong B. W.. ( 2009;). Identification and expression analysis of infectious laryngotracheitis virus encoding microRNAs. . Virus Genes 39:, 301–308. [CrossRef][PubMed]
    [Google Scholar]
  25. Ruby J. G., Stark A., Johnston W. K., Kellis M., Bartel D. P., Lai E. C.. ( 2007;). Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. . Genome Res 17:, 1850–1864. [CrossRef][PubMed]
    [Google Scholar]
  26. Seo G. J., Fink L. H., O’Hara B., Atwood W. J., Sullivan C. S.. ( 2008;). Evolutionarily conserved function of a viral microRNA. . J Virol 82:, 9823–9828. [CrossRef][PubMed]
    [Google Scholar]
  27. Seo G. J., Chen C. J., Sullivan C. S.. ( 2009;). Merkel cell polyomavirus encodes a microRNA with the ability to autoregulate viral gene expression. . Virology 383:, 183–187. [CrossRef][PubMed]
    [Google Scholar]
  28. Shi W., Hendrix D., Levine M., Haley B.. ( 2009;). A distinct class of small RNAs arises from pre-miRNA-proximal regions in a simple chordate. . Nat Struct Mol Biol 16:, 183–189. [CrossRef][PubMed]
    [Google Scholar]
  29. Sullivan C. S., Grundhoff A. T., Tevethia S., Pipas J. M., Ganem D.. ( 2005;). SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. . Nature 435:, 682–686. [CrossRef][PubMed]
    [Google Scholar]
  30. Tang S., Bertke A. S., Patel A., Wang K., Cohen J. I., Krause P. R.. ( 2008;). An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor. . Proc Natl Acad Sci U S A 105:, 10931–10936. [CrossRef][PubMed]
    [Google Scholar]
  31. Tang S., Patel A., Krause P. R.. ( 2009;). Novel less-abundant viral microRNAs encoded by herpes simplex virus 2 latency-associated transcript and their roles in regulating ICP34.5 and ICP0 mRNAs. . J Virol 83:, 1433–1442. [CrossRef][PubMed]
    [Google Scholar]
  32. Umbach J. L., Cullen B. R.. ( 2010;). In-depth analysis of Kaposi’s sarcoma-associated herpesvirus microRNA expression provides insights into the mammalian microRNA-processing machinery. . J Virol 84:, 695–703. [CrossRef][PubMed]
    [Google Scholar]
  33. Umbach J. L., Strelow L. I., Wong S. W., Cullen B. R.. ( 2010;). Analysis of rhesus rhadinovirus microRNAs expressed in virus-induced tumors from infected rhesus macaques. . Virology 405:, 592–599. [CrossRef][PubMed]
    [Google Scholar]
  34. Waidner L. A., Morgan R. W., Anderson A. S., Bernberg E. L., Kamboj S., Garcia M., Riblet S. M., Ouyang M., Isaacs G. K.. & other authors ( 2009;). MicroRNAs of Gallid and Meleagrid herpesviruses show generally conserved genomic locations and are virus-specific. . Virology 388:, 128–136. [CrossRef][PubMed]
    [Google Scholar]
  35. Waidner L. A., Burnside J., Anderson A. S., Bernberg E. L., German M. A., Meyers B. C., Green P. J., Morgan R. W.. ( 2011;). A microRNA of infectious laryngotracheitis virus can downregulate and direct cleavage of ICP4 mRNA. . Virology 411:, 25–31. [CrossRef][PubMed]
    [Google Scholar]
  36. Wang J., Osterrieder N.. ( 2011;). Generation of an infectious clone of duck enteritis virus (DEV) and of a vectored DEV expressing hemagglutinin of H5N1 avian influenza virus. . Virus Res 159:, 23–31. [CrossRef][PubMed]
    [Google Scholar]
  37. Wang H., Ward M. F., Fan X. G., Sama A. E., Li W.. ( 2006;). Potential role of high mobility group box 1 in viral infectious diseases. . Viral Immunol 19:, 3–9. [CrossRef][PubMed]
    [Google Scholar]
  38. Wang Y., Brahmakshatriya V., Zhu H., Lupiani B., Reddy S. M., Yoon B. J., Gunaratne P. H., Kim J. H., Chen R.. & other authors ( 2009;). Identification of differentially expressed miRNAs in chicken lung and trachea with avian influenza virus infection by a deep sequencing approach. . BMC Genomics 10:, 512. [CrossRef][PubMed]
    [Google Scholar]
  39. Wang J., Höper D., Beer M., Osterrieder N.. ( 2011;). Complete genome sequence of virulent duck enteritis virus (DEV) strain 2085 and comparison with genome sequences of virulent and attenuated DEV strains. . Virus Res 160:, 316–325. [CrossRef][PubMed]
    [Google Scholar]
  40. Xu H., Yao Y., Zhao Y., Smith L. P., Baigent S. J., Nair V.. ( 2008;). Analysis of the expression profiles of Marek’s disease virus-encoded microRNAs by real-time quantitative PCR. . J Virol Methods 149:, 201–208. [CrossRef][PubMed]
    [Google Scholar]
  41. Yao Y., Zhao Y., Xu H., Smith L. P., Lawrie C. H., Sewer A., Zavolan M., Nair V.. ( 2007;). Marek’s disease virus type 2 (MDV-2)-encoded microRNAs show no sequence conservation with those encoded by MDV-1. . J Virol 81:, 7164–7170. [CrossRef][PubMed]
    [Google Scholar]
  42. Yao Y., Zhao Y., Xu H., Smith L. P., Lawrie C. H., Watson M., Nair V.. ( 2008;). MicroRNA profile of Marek’s disease virus-transformed T-cell line MSB-1: predominance of virus-encoded microRNAs. . J Virol 82:, 4007–4015. [CrossRef][PubMed]
    [Google Scholar]
  43. Yao Y., Zhao Y., Smith L. P., Watson M., Nair V.. ( 2009;). Novel microRNAs (miRNAs) encoded by herpesvirus of turkeys: evidence of miRNA evolution by duplication. . J Virol 83:, 6969–6973. [CrossRef][PubMed]
    [Google Scholar]
  44. Zhao Y., Yao Y., Xu H., Lambeth L., Smith L. P., Kgosana L., Wang X., Nair V.. ( 2009;). A functional microRNA-155 ortholog encoded by the oncogenic Marek’s disease virus. . J Virol 83:, 489–492. [CrossRef][PubMed]
    [Google Scholar]
  45. Zhao Y., Xu H., Yao Y., Smith L. P., Kgosana L., Green J., Petherbridge L., Baigent S. J., Nair V.. ( 2011;). Critical role of the virus-encoded microRNA-155 ortholog in the induction of Marek’s disease lymphomas. . PLoS Pathog 7:, e1001305. [CrossRef][PubMed]
    [Google Scholar]
  46. Zhong Z., Chai T., Duan H., Miao Z., Li X., Yao M., Yuan W., Wang W., Li Q.. & other authors ( 2009;). REP-PCR tracking of the origin and spread of airborne Staphylococcus aureus in and around chicken house. . Indoor Air 19:, 511–516. [CrossRef][PubMed]
    [Google Scholar]
  47. Zuker M.. ( 2003;). Mfold web server for nucleic acid folding and hybridization prediction. . Nucleic Acids Res 31:, 3406–3415. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.040634-0
Loading
/content/journal/jgv/10.1099/vir.0.040634-0
Loading

Data & Media loading...

Supplements

Supplementary tables 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error