1887

Abstract

Cap-dependent and internal ribosomal entry site (IRES)-mediated translation are regulated differently within cells. Viral IRES-mediated translation often remains active when cellular cap-dependent translation is severely impaired under cellular stresses induced by virus infection. To investigate how cellular stresses influence the efficiency of viral IRES-mediated translation, we used a bicistronic luciferase reporter construct harbouring IRES elements from the following viruses: encephalomyocarditis virus (EMCV), foot-and-mouth disease virus (FMDV), hepatitis C virus (HCV) or human rhinovirus (HRV). NIH3T3 cells transfected with these bicistronic reporter constructs were subjected to different cellular stresses. Increased translation initiation was only observed under amino acid starvation when EMCV or FMDV IRES elements were present. To identify cellular mechanisms that promoted viral IRES-mediated translation, we tested the involvement of eukaryotic initiation factor 4E-binding protein (4E-BP), general control non-depressed 2 (GCN2) and eukaryotic initiation factor 2B (eIF2B), as these are known to be modulated under amino acid starvation. Knockdown of 4E-BP1 impaired the promotion of EMCV and FMDV IRES-mediated translation under amino acid starvation, whereas GCN2 and eIF2B were not involved. To further investigate how 4E-BP1 regulates translation initiated by EMCV and FMDV IRES elements, we used a phosphoinositide kinase-3 inhibitor (LY294002), an mTOR inhibitor (Torin1) or leucine starvation to mimic 4E-BP1 dephosphorylation induced by amino acid starvation. 4E-BP1 dephosphorylation induced by the treatments was not sufficient to promote viral IRES-mediated translation. These results suggest that 4E-BP1 regulates EMCV and FMDV IRES-mediated translation under amino acid starvation, but not via its dephosphorylation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.040386-0
2012-05-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/5/951.html?itemId=/content/journal/jgv/10.1099/vir.0.040386-0&mimeType=html&fmt=ahah

References

  1. Akiri G. , Nahari D. , Finkelstein Y. , Le S. Y. , Elroy-Stein O. , Levi B. Z. . ( 1998; ). Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription. . Oncogene 17:, 227–236. [CrossRef] [PubMed]
    [Google Scholar]
  2. Beugnet A. , Wang X. , Proud C. G. . ( 2003; ). Target of rapamycin (TOR)-signaling and RAIP motifs play distinct roles in the mammalian TOR-dependent phosphorylation of initiation factor 4E-binding protein 1. . J Biol Chem 278:, 40717–40722. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chappell S. A. , Owens G. C. , Mauro V. P. . ( 2001; ). A 5′ leader of Rbm3, a cold stress-induced mRNA, mediates internal initiation of translation with increased efficiency under conditions of mild hypothermia. . J Biol Chem 276:, 36917–36922. [CrossRef] [PubMed]
    [Google Scholar]
  4. Clemens M. J. . ( 2001; ). Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis. . Prog Mol Subcell Biol 27:, 57–89.[PubMed]
    [Google Scholar]
  5. Connor J. H. , Lyles D. S. . ( 2002; ). Vesicular stomatitis virus infection alters the eIF4F translation initiation complex and causes dephosphorylation of the eIF4E binding protein 4E-BP1. . J Virol 76:, 10177–10187. [CrossRef] [PubMed]
    [Google Scholar]
  6. Crespo J. L. , Hall M. N. . ( 2002; ). Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae . . Microbiol Mol Biol Rev 66:, 579–591. [CrossRef] [PubMed]
    [Google Scholar]
  7. Crespo J. L. , Powers T. , Fowler B. , Hall M. N. . ( 2002; ). The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. . Proc Natl Acad Sci U S A 99:, 6784–6789. [CrossRef] [PubMed]
    [Google Scholar]
  8. Deng J. , Harding H. P. , Raught B. , Gingras A. C. , Berlanga J. J. , Scheuner D. , Kaufman R. J. , Ron D. , Sonenberg N. . ( 2002; ). Activation of GCN2 in UV-irradiated cells inhibits translation. . Curr Biol 12:, 1279–1286. [CrossRef] [PubMed]
    [Google Scholar]
  9. Dowling R. J. , Topisirovic I. , Alain T. , Bidinosti M. , Fonseca B. D. , Petroulakis E. , Wang X. , Larsson O. , Selvaraj A. . & other authors ( 2010; ). mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. . Science 328:, 1172–1176. [CrossRef] [PubMed]
    [Google Scholar]
  10. Fernandez J. , Yaman I. , Mishra R. , Merrick W. C. , Snider M. D. , Lamers W. H. , Hatzoglou M. . ( 2001; ). Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability. . J Biol Chem 276:, 12285–12291. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gebauer F. , Hentze M. W. . ( 2004; ). Molecular mechanisms of translational control. . Nat Rev Mol Cell Biol 5:, 827–835. [CrossRef] [PubMed]
    [Google Scholar]
  12. Gendron K. , Ferbeyre G. , Heveker N. , Brakier-Gingras L. . ( 2011; ). The activity of the HIV-1 IRES is stimulated by oxidative stress and controlled by a negative regulatory element. . Nucleic Acids Res 39:, 902–912. [CrossRef] [PubMed]
    [Google Scholar]
  13. Gingras A. C. , Sonenberg N. . ( 1997; ). Adenovirus infection inactivates the translational inhibitors 4E-BP1 and 4E-BP2. . Virology 237:, 182–186. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gingras A. C. , Svitkin Y. , Belsham G. J. , Pause A. , Sonenberg N. . ( 1996; ). Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus. . Proc Natl Acad Sci U S A 93:, 5578–5583. [CrossRef] [PubMed]
    [Google Scholar]
  15. Gingras A. C. , Gygi S. P. , Raught B. , Polakiewicz R. D. , Abraham R. T. , Hoekstra M. F. , Aebersold R. , Sonenberg N. . ( 1999; ). Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. . Genes Dev 13:, 1422–1437. [CrossRef] [PubMed]
    [Google Scholar]
  16. Gingras A. C. , Raught B. , Gygi S. P. , Niedzwiecka A. , Miron M. , Burley S. K. , Polakiewicz R. D. , Wyslouch-Cieszynska A. , Aebersold R. , Sonenberg N. . ( 2001; ). Hierarchical phosphorylation of the translation inhibitor 4E-BP1. . Genes Dev 15:, 2852–2864.[PubMed] [CrossRef]
    [Google Scholar]
  17. Hara K. , Yonezawa K. , Weng Q. P. , Kozlowski M. T. , Belham C. , Avruch J. . ( 1998; ). Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. . J Biol Chem 273:, 14484–14494. [CrossRef] [PubMed]
    [Google Scholar]
  18. Harding H. P. , Novoa I. , Zhang Y. , Zeng H. , Wek R. , Schapira M. , Ron D. . ( 2000; ). Regulated translation initiation controls stress-induced gene expression in mammalian cells. . Mol Cell 6:, 1099–1108. [CrossRef] [PubMed]
    [Google Scholar]
  19. Hellen C. U. , Sarnow P. . ( 2001; ). Internal ribosome entry sites in eukaryotic mRNA molecules. . Genes Dev 15:, 1593–1612. [CrossRef] [PubMed]
    [Google Scholar]
  20. Herbert T. P. , Tee A. R. , Proud C. G. . ( 2002; ). The extracellular signal-regulated kinase pathway regulates the phosphorylation of 4E-BP1 at multiple sites. . J Biol Chem 277:, 11591–11596. [CrossRef] [PubMed]
    [Google Scholar]
  21. Hershey J. W. . ( 1991; ). Translational control in mammalian cells. . Annu Rev Biochem 60:, 717–755. [CrossRef] [PubMed]
    [Google Scholar]
  22. Holcik M. . ( 2003; ). Translational upregulation of the X-linked inhibitor of apoptosis. . Ann N Y Acad Sci 1010:, 249–258. [CrossRef] [PubMed]
    [Google Scholar]
  23. Holcik M. , Korneluk R. G. . ( 2000; ). Functional characterization of the X-linked inhibitor of apoptosis (XIAP) internal ribosome entry site element: role of La autoantigen in XIAP translation. . Mol Cell Biol 20:, 4648–4657. [CrossRef] [PubMed]
    [Google Scholar]
  24. Holcik M. , Lefebvre C. , Yeh C. , Chow T. , Korneluk R. G. . ( 1999; ). A new internal-ribosome-entry-site motif potentiates XIAP-mediated cytoprotection. . Nat Cell Biol 1:, 190–192. [CrossRef] [PubMed]
    [Google Scholar]
  25. Holcik M. , Graber T. , Lewis S. M. , Lefebvre C. A. , Lacasse E. , Baird S. . ( 2005; ). Spurious splicing within the XIAP 5′ UTR occurs in the Rluc/Fluc but not the βgal/CAT bicistronic reporter system. . RNA 11:, 1605–1609. [CrossRef] [PubMed]
    [Google Scholar]
  26. Huang J. T. , Schneider R. J. . ( 1991; ). Adenovirus inhibition of cellular protein synthesis involves inactivation of cap-binding protein. . Cell 65:, 271–280. [CrossRef] [PubMed]
    [Google Scholar]
  27. Johannes G. , Sarnow P. . ( 1998; ). Cap-independent polysomal association of natural mRNAs encoding c-myc, BiP, and eIF4G conferred by internal ribosome entry sites. . RNA 4:, 1500–1513. [CrossRef] [PubMed]
    [Google Scholar]
  28. Johansen L. K. , Morrow C. D. . ( 2000; ). Inherent instability of poliovirus genomes containing two internal ribosome entry site (IRES) elements supports a role for the IRES in encapsidation. . J Virol 74:, 8335–8342. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kim D. H. , Sarbassov D. D. , Ali S. M. , King J. E. , Latek R. R. , Erdjument-Bromage H. , Tempst P. , Sabatini D. M. . ( 2002; ). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. . Cell 110:, 163–175. [CrossRef] [PubMed]
    [Google Scholar]
  30. Kimball S. R. . ( 1999; ). Eukaryotic initiation factor eIF2. . Int J Biochem Cell Biol 31:, 25–29. [CrossRef] [PubMed]
    [Google Scholar]
  31. Kimball S. R. . ( 2001; ). Regulation of translation initiation by amino acids in eukaryotic cells. . Prog Mol Subcell Biol 26:, 155–184. [CrossRef] [PubMed]
    [Google Scholar]
  32. Komar A. A. , Hatzoglou M. . ( 2005; ). Internal ribosome entry sites in cellular mRNAs: mystery of their existence. . J Biol Chem 280:, 23425–23428. [CrossRef] [PubMed]
    [Google Scholar]
  33. Lafuente E. , Ramos R. , Martínez-Salas E. . ( 2002; ). Long-range RNA–RNA interactions between distant regions of the hepatitis C virus internal ribosome entry site element. . J Gen Virol 83:, 1113–1121.[PubMed]
    [Google Scholar]
  34. Lang K. J. , Kappel A. , Goodall G. J. . ( 2002; ). Hypoxia-inducible factor-1α mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. . Mol Biol Cell 13:, 1792–1801. [CrossRef] [PubMed]
    [Google Scholar]
  35. Lewis S. M. , Veyrier A. , Hosszu Ungureanu N. , Bonnal S. , Vagner S. , Holcik M. . ( 2007; ). Subcellular relocalization of a trans-acting factor regulates XIAP IRES-dependent translation. . Mol Biol Cell 18:, 1302–1311. [CrossRef] [PubMed]
    [Google Scholar]
  36. Licursi M. , Christian S. L. , Pongnopparat T. , Hirasawa K. . ( 2011; ). In vitro and in vivo comparison of viral and cellular internal ribosome entry sites for bicistronic vector expression. . Gene Ther 18:, 631–636. [CrossRef] [PubMed]
    [Google Scholar]
  37. Macejak D. G. , Sarnow P. . ( 1991; ). Internal initiation of translation mediated by the 5′ leader of a cellular mRNA. . Nature 353:, 90–94. [CrossRef] [PubMed]
    [Google Scholar]
  38. Majumder M. , Yaman I. , Gaccioli F. , Zeenko V. V. , Wang C. , Caprara M. G. , Venema R. C. , Komar A. A. , Snider M. D. , Hatzoglou M. . ( 2009; ). The hnRNA-binding proteins hnRNP L and PTB are required for efficient translation of the Cat-1 arginine/lysine transporter mRNA during amino acid starvation. . Mol Cell Biol 29:, 2899–2912. [CrossRef] [PubMed]
    [Google Scholar]
  39. Martínez-Salas E. , Ramos R. , Lafuente E. , López de Quinto S. . ( 2001; ). Functional interactions in internal translation initiation directed by viral and cellular IRES elements. . J Gen Virol 82:, 973–984.[PubMed]
    [Google Scholar]
  40. Mitchell S. A. , Brown E. C. , Coldwell M. J. , Jackson R. J. , Willis A. E. . ( 2001; ). Protein factor requirements of the Apaf-1 internal ribosome entry segment: roles of polypyrimidine tract binding protein and upstream of N-ras. . Mol Cell Biol 21:, 3364–3374. [CrossRef] [PubMed]
    [Google Scholar]
  41. Nevins T. A. , Harder Z. M. , Korneluk R. G. , Holcík M. . ( 2003; ). Distinct regulation of internal ribosome entry site-mediated translation following cellular stress is mediated by apoptotic fragments of eIF4G translation initiation factor family members eIF4GI and p97/DAP5/NAT1. . J Biol Chem 278:, 3572–3579. [CrossRef] [PubMed]
    [Google Scholar]
  42. Ohlmann T. , Rau M. , Pain V. M. , Morley S. J. . ( 1996; ). The C-terminal domain of eukaryotic protein synthesis initiation factor (eIF) 4G is sufficient to support cap-independent translation in the absence of eIF4E. . EMBO J 15:, 1371–1382.[PubMed]
    [Google Scholar]
  43. Pacheco A. , Reigadas S. , Martínez-Salas E. . ( 2008; ). Riboproteomic analysis of polypeptides interacting with the internal ribosome-entry site element of foot-and-mouth disease viral RNA. . Proteomics 8:, 4782–4790. [CrossRef] [PubMed]
    [Google Scholar]
  44. Pain V. M. . ( 1996; ). Initiation of protein synthesis in eukaryotic cells. . Eur J Biochem 236:, 747–771. [CrossRef] [PubMed]
    [Google Scholar]
  45. Pearce A. K. , Humphrey T. C. . ( 2001; ). Integrating stress-response and cell-cycle checkpoint pathways. . Trends Cell Biol 11:, 426–433. [CrossRef] [PubMed]
    [Google Scholar]
  46. Pelletier J. , Sonenberg N. . ( 1988; ). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. . Nature 334:, 320–325. [CrossRef] [PubMed]
    [Google Scholar]
  47. Pestova T. V. , Shatsky I. N. , Hellen C. U. . ( 1996; ). Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. . Mol Cell Biol 16:, 6870–6878.[PubMed]
    [Google Scholar]
  48. Pestova T. V. , Kolupaeva V. G. , Lomakin I. B. , Pilipenko E. V. , Shatsky I. N. , Agol V. I. , Hellen C. U. . ( 2001; ). Molecular mechanisms of translation initiation in eukaryotes. . Proc Natl Acad Sci U S A 98:, 7029–7036. [CrossRef] [PubMed]
    [Google Scholar]
  49. Petroulakis E. , Parsyan A. , Dowling R. J. , LeBacquer O. , Martineau Y. , Bidinosti M. , Larsson O. , Alain T. , Rong L. . & other authors ( 2009; ). p53-dependent translational control of senescence and transformation via 4E-BPs. . Cancer Cell 16:, 439–446. [CrossRef] [PubMed]
    [Google Scholar]
  50. Price N. T. , Proud C. G. . ( 1990; ). Phosphorylation of protein synthesis initiation factor-2. Identification of the site in the α-subunit phosphorylated in reticulocyte lysates. . Biochim Biophys Acta 1054:, 83–88. [CrossRef] [PubMed]
    [Google Scholar]
  51. Proud C. G. . ( 1992; ). Protein phosphorylation in translational control. . Curr Top Cell Regul 32:, 243–369.[PubMed]
    [Google Scholar]
  52. Proud C. G. . ( 2005; ). eIF2 and the control of cell physiology. . Semin Cell Dev Biol 16:, 3–12. [CrossRef] [PubMed]
    [Google Scholar]
  53. Pyronnet S. , Pradayrol L. , Sonenberg N. . ( 2000; ). A cell cycle-dependent internal ribosome entry site. . Mol Cell 5:, 607–616. [CrossRef] [PubMed]
    [Google Scholar]
  54. Rong L. , Livingstone M. , Sukarieh R. , Petroulakis E. , Gingras A. C. , Crosby K. , Smith B. , Polakiewicz R. D. , Pelletier J. . & other authors ( 2008; ). Control of eIF4E cellular localization by eIF4E-binding proteins, 4E-BPs. . RNA 14:, 1318–1327. [CrossRef] [PubMed]
    [Google Scholar]
  55. Shatkin A. J. . ( 1985; ). mRNA cap binding proteins: essential factors for initiating translation. . Cell 40:, 223–224. [CrossRef] [PubMed]
    [Google Scholar]
  56. She Q. B. , Halilovic E. , Ye Q. , Zhen W. , Shirasawa S. , Sasazuki T. , Solit D. B. , Rosen N. . ( 2010; ). 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. . Cancer Cell 18:, 39–51. [CrossRef] [PubMed]
    [Google Scholar]
  57. Sonenberg N. , Hershey J. W. B. , Mathews M. . ( 2000; ). Translational Control of Gene Expression. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  58. Stein I. , Itin A. , Einat P. , Skaliter R. , Grossman Z. , Keshet E. . ( 1998; ). Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. . Mol Cell Biol 18:, 3112–3119.[PubMed]
    [Google Scholar]
  59. Stoneley M. , Willis A. E. . ( 2004; ). Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. . Oncogene 23:, 3200–3207. [CrossRef] [PubMed]
    [Google Scholar]
  60. Stoneley M. , Paulin F. E. , Le Quesne J. P. , Chappell S. A. , Willis A. E. . ( 1998; ). C-Myc 5′ untranslated region contains an internal ribosome entry segment. . Oncogene 16:, 423–428. [CrossRef] [PubMed]
    [Google Scholar]
  61. Subkhankulova T. , Mitchell S. A. , Willis A. E. . ( 2001; ). Internal ribosome entry segment-mediated initiation of c-Myc protein synthesis following genotoxic stress. . Biochem J 359:, 183–192. [CrossRef] [PubMed]
    [Google Scholar]
  62. Svitkin Y. V. , Herdy B. , Costa-Mattioli M. , Gingras A. C. , Raught B. , Sonenberg N. . ( 2005; ). Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation. . Mol Cell Biol 25:, 10556–10565. [CrossRef] [PubMed]
    [Google Scholar]
  63. Van Eden M. E. , Byrd M. P. , Sherrill K. W. , Lloyd R. E. . ( 2004; ). Translation of cellular inhibitor of apoptosis protein 1 (c-IAP1) mRNA is IRES mediated and regulated during cell stress. . RNA 10:, 469–481. [CrossRef] [PubMed]
    [Google Scholar]
  64. Wang X. , Proud C. G. . ( 2008; ). A novel mechanism for the control of translation initiation by amino acids, mediated by phosphorylation of eukaryotic initiation factor 2B. . Mol Cell Biol 28:, 1429–1442. [CrossRef] [PubMed]
    [Google Scholar]
  65. Wang X. , Beugnet A. , Murakami M. , Yamanaka S. , Proud C. G. . ( 2005; ). Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins. . Mol Cell Biol 25:, 2558–2572. [CrossRef] [PubMed]
    [Google Scholar]
  66. Wek R. C. , Jiang H. Y. , Anthony T. G. . ( 2006; ). Coping with stress: eIF2 kinases and translational control. . Biochem Soc Trans 34:, 7–11. [CrossRef] [PubMed]
    [Google Scholar]
  67. Yamasaki S. , Anderson P. . ( 2008; ). Reprogramming mRNA translation during stress. . Curr Opin Cell Biol 20:, 222–226. [CrossRef] [PubMed]
    [Google Scholar]
  68. Yeh S. H. , Yang W. B. , Gean P. W. , Hsu C. Y. , Tseng J. T. , Su T. P. , Chang W. C. , Hung J. J. . ( 2011; ). Translational and transcriptional control of Sp1 against ischaemia through a hydrogen peroxide-activated internal ribosomal entry site pathway. . Nucleic Acids Res 39:, 5412–5423. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.040386-0
Loading
/content/journal/jgv/10.1099/vir.0.040386-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error