1887

Abstract

Aichi virus (AiV), a member of the genus in the family , causes gastroenteritis in humans. It was noted that AiV differs from other picornaviruses in its unusually high C content and a very high degree of genome-ordered RNA secondary structures. However, the genetic variability and mutational restrictions on a full-genome scale have not been studied. In addition to the available five complete AiV genomes, we determined here another five complete coding sequences of AiV sampled in Germany, 2004. Distinctive AiV genetic features included a low incidence of recombination along the genome without obvious hotspots or spared regions and very low rates of synonymous and non-synonymous variation, supporting an absence of AiV serotypes. In addition, the absence of recombination between AiV genotypes A and B suggested the existence of reproductive isolation between taxonomic units below the species level. In contrast to most other picornaviruses, AiV genomes strongly avoided the UpA dinucleotide, while there was no obvious selection against the CpG dinucleotide. AiV genomes also appeared to contain a codon usage bias (CUB) apparent as an effective number of codons of 39.5, which was amongst the most extreme among RNA viruses. A set of sequence scrambling algorithms was developed to determine the origin of CUB in AiV. While in most picornaviruses the genomic dinucleotide content contributed significantly to CUB, in AiV its extreme nucleotide content, i.e. 57 % third codon position C, was the main driving force behind the apparent CUB.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.040311-0
2012-06-01
2020-07-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/6/1226.html?itemId=/content/journal/jgv/10.1099/vir.0.040311-0&mimeType=html&fmt=ahah

References

  1. Agol V. I., Gmyl A. P.. 2010; Viral security proteins: counteracting host defences. Nat Rev Microbiol8:867–878 [CrossRef][PubMed]
    [Google Scholar]
  2. Ambert-Balay K., Lorrot M., Bon F., Giraudon H., Kaplon J., Wolfer M., Lebon P., Gendrel D., Pothier P.. 2008; Prevalence and genetic diversity of Aichi virus strains in stool samples from community and hospitalized patients. J Clin Microbiol46:1252–1258 [CrossRef][PubMed]
    [Google Scholar]
  3. Belalov I. S., Isaeva O. V., Lukashev A. N.. 2011; Recombination in hepatitis A virus: evidence for reproductive isolation of genotypes. J Gen Virol92:860–872 [CrossRef][PubMed]
    [Google Scholar]
  4. Bisbal C., Silverman R. H.. 2007; Diverse functions of RNase L and implications in pathology. Biochimie89:789–798 [CrossRef][PubMed]
    [Google Scholar]
  5. Bulmer M.. 1987; Coevolution of codon usage and transfer RNA abundance. Nature325:728–730 [CrossRef][PubMed]
    [Google Scholar]
  6. Chamary J. V., Parmley J. L., Hurst L. D.. 2006; Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat Rev Genet7:98–108 [CrossRef][PubMed]
    [Google Scholar]
  7. D’Andrea L., Pintó R. M., Bosch A., Musto H., Cristina J.. 2011; A detailed comparative analysis on the overall codon usage patterns in hepatitis A virus. Virus Res157:19–24 [CrossRef][PubMed]
    [Google Scholar]
  8. Davis M., Sagan S. M., Pezacki J. P., Evans D. J., Simmonds P.. 2008; Bioinformatic and physical characterizations of genome-scale ordered RNA structure in mammalian RNA viruses. J Virol82:11824–11836 [CrossRef][PubMed]
    [Google Scholar]
  9. Drexler J. F., Baumgarte S., de Souza Luna L. K., Stöcker A., Almeida P. S., Ribeiro T. C., Petersen N., Herzog P., Pedroso C.. other authors 2010; Genomic features and evolutionary constraints in Saffold-like cardioviruses. J Gen Virol91:1418–1427 [CrossRef][PubMed]
    [Google Scholar]
  10. Drexler J. F., Baumgarte S., de Souza Luna L. K., Eschbach-Bludau M., Lukashev A. N., Drosten C.. 2011; Aichi virus shedding in high concentrations in patients with acute diarrhea. Emerg Infect Dis17:1544–1548[PubMed]
    [Google Scholar]
  11. Fuglsang A.. 2006; Accounting for background nucleotide composition when measuring codon usage bias: brilliant idea, difficult in practice. Mol Biol Evol23:1345–1347 [CrossRef][PubMed]
    [Google Scholar]
  12. Greenbaum B. D., Levine A. J., Bhanot G., Rabadan R.. 2008; Patterns of evolution and host gene mimicry in influenza and other RNA viruses. PLoS Pathog4:e1000079 [CrossRef][PubMed]
    [Google Scholar]
  13. Greenbaum B. D., Rabadan R., Levine A. J.. 2009; Patterns of oligonucleotide sequences in viral and host cell RNA identify mediators of the host innate immune system. PLoS ONE4:e5969 [CrossRef][PubMed]
    [Google Scholar]
  14. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  15. Han J. Q., Townsend H. L., Jha B. K., Paranjape J. M., Silverman R. H., Barton D. J.. 2007; A phylogenetically conserved RNA structure in the poliovirus open reading frame inhibits the antiviral endoribonuclease RNase L.. J Virol81:5561–5572 [CrossRef][PubMed]
    [Google Scholar]
  16. Harris R. S., Liddament M. T.. 2004; Retroviral restriction by APOBEC proteins. Nat Rev Immunol4:868–877 [CrossRef][PubMed]
    [Google Scholar]
  17. Heath L., van der Walt E., Varsani A., Martin D. P.. 2006; Recombination patterns in aphthoviruses mirror those found in other picornaviruses. J Virol80:11827–11832 [CrossRef][PubMed]
    [Google Scholar]
  18. Hershberg R., Petrov D. A.. 2008; Selection on codon bias. Annu Rev Genet42:287–299 [CrossRef][PubMed]
    [Google Scholar]
  19. Huang S. C., Hsu Y. W., Wang H. C., Huang S. W., Kiang D., Tsai H. P., Wang S. M., Liu C. C., Lin K. H.. other authors 2008; Appearance of intratypic recombination of enterovirus 71 in Taiwan from 2002 to 2005. Virus Res131:250–259 [CrossRef][PubMed]
    [Google Scholar]
  20. Jenkins G. M., Holmes E. C.. 2003; The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res92:1–7 [CrossRef][PubMed]
    [Google Scholar]
  21. Karlin S., Doerfler W., Cardon L. R.. 1994; Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses?. J Virol68:2889–2897[PubMed]
    [Google Scholar]
  22. Krieg A. M., Yi A. K., Matson S., Waldschmidt T. J., Bishop G. A., Teasdale R., Koretzky G. A., Klinman D. M.. 1995; CpG motifs in bacterial DNA trigger direct B-cell activation. Nature374:546–549 [CrossRef][PubMed]
    [Google Scholar]
  23. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M.. other authors 2001; Initial sequencing and analysis of the human genome. Nature409:860–921 [CrossRef][PubMed]
    [Google Scholar]
  24. Librado P., Rozas J.. 2009; DNAsp v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics25:1451–1452 [CrossRef][PubMed]
    [Google Scholar]
  25. Lister R., Pelizzola M., Dowen R. H., Hawkins R. D., Hon G., Tonti-Filippini J., Nery J. R., Lee L., Ye Z.. other authors 2009; Human DNA methylomes at base resolution show widespread epigenomic differences. Nature462:315–322 [CrossRef][PubMed]
    [Google Scholar]
  26. Liu Y. S., Zhou J. H., Chen H. T., Ma L. N., Pejsak Z., Ding Y. Z., Zhang J.. 2011; The characteristics of the synonymous codon usage in enterovirus 71 virus and the effects of host on the virus in codon usage pattern. Infect Genet Evol11:1168–1173 [CrossRef][PubMed]
    [Google Scholar]
  27. Lole K. S., Bollinger R. C., Paranjape R. S., Gadkari D., Kulkarni S. S., Novak N. G., Ingersoll R., Sheppard H. W., Ray S. C.. 1999; Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol73:152–160[PubMed]
    [Google Scholar]
  28. Lukashev A. N.. 2005; Role of recombination in evolution of enteroviruses. Rev Med Virol15:157–167 [CrossRef][PubMed]
    [Google Scholar]
  29. Lukashev A. N.. 2010; Recombination among picornaviruses. Rev Med Virol20:327–337 [CrossRef][PubMed]
    [Google Scholar]
  30. Lukashev A. N., Lashkevich V. A., Ivanova O. E., Koroleva G. A., Hinkkanen A. E., Ilonen J.. 2005; Recombination in circulating Human enterovirus B: independent evolution of structural and non-structural genome regions. J Gen Virol86:3281–3290 [CrossRef][PubMed]
    [Google Scholar]
  31. Novembre J. A.. 2002; Accounting for background nucleotide composition when measuring codon usage bias. Mol Biol Evol19:1390–1394 [CrossRef][PubMed]
    [Google Scholar]
  32. Oh D. Y., Silva P. A., Hauroeder B., Diedrich S., Cardoso D. D., Schreier E.. 2006; Molecular characterization of the first Aichi viruses isolated in Europe and in South America. Arch Virol151:1199–1206 [CrossRef][PubMed]
    [Google Scholar]
  33. Pham N. T., Khamrin P., Nguyen T. A., Kanti D. S., Phan T. G., Okitsu S., Ushijima H.. 2007; Isolation and molecular characterization of Aichi viruses from fecal specimens collected in Japan, Bangladesh, Thailand, and Vietnam. J Clin Microbiol45:2287–2288 [CrossRef][PubMed]
    [Google Scholar]
  34. Player M. R., Torrence P. F.. 1998; The 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradation. Pharmacol Ther78:55–113 [CrossRef][PubMed]
    [Google Scholar]
  35. Plotkin J. B., Kudla G.. 2011; Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet12:32–42 [CrossRef][PubMed]
    [Google Scholar]
  36. Reuter G., Boros A., Pankovics P.. 2011; Kobuviruses – a comprehensive review. Rev Med Virol21:32–41 [CrossRef][PubMed]
    [Google Scholar]
  37. Ribes J. M., Montava R., Téllez-Castillo C. J., Fernández-Jiménez M., Buesa J.. 2010; Seroprevalence of Aichi virus in a Spanish population from 2007 to 2008. Clin Vaccine Immunol17:545–549 [CrossRef][PubMed]
    [Google Scholar]
  38. Rima B. K., McFerran N. V.. 1997; Dinucleotide and stop codon frequencies in single-stranded RNA viruses. J Gen Virol78:2859–2870[PubMed]
    [Google Scholar]
  39. Sasaki J., Kusuhara Y., Maeno Y., Kobayashi N., Yamashita T., Sakae K., Takeda N., Taniguchi K.. 2001; Construction of an infectious cDNA clone of Aichi virus (a new member of the family Picornaviridae) and mutational analysis of a stem-loop structure at the 5′ end of the genome. J Virol75:8021–8030 [CrossRef][PubMed]
    [Google Scholar]
  40. Sdiri-Loulizi K., Hassine M., Bour J. B., Ambert-Balay K., Mastouri M., Aho L. S., Gharbi-Khelifi H., Aouni Z., Sakly N.. other authors 2010; Aichi virus IgG seroprevalence in Tunisia parallels genomic detection and clinical presentation in children with gastroenteritis. Clin Vaccine Immunol17:1111–1116 [CrossRef][PubMed]
    [Google Scholar]
  41. Simmonds P.. 2006; Recombination and selection in the evolution of picornaviruses and other mammalian positive-stranded RNA viruses. J Virol80:11124–11140 [CrossRef][PubMed]
    [Google Scholar]
  42. Simmonds P., Smith D. B.. 1999; Structural constraints on RNA virus evolution. J Virol73:5787–5794[PubMed]
    [Google Scholar]
  43. Simmonds P., Welch J.. 2006; Frequency and dynamics of recombination within different species of human enteroviruses. J Virol80:483–493 [CrossRef][PubMed]
    [Google Scholar]
  44. Simmonds P., Tuplin A., Evans D. J.. 2004; Detection of genome-scale ordered RNA structure (GORS) in genomes of positive-stranded RNA viruses: implications for virus evolution and host persistence. RNA10:1337–1351 [CrossRef][PubMed]
    [Google Scholar]
  45. Stapleton J. T., Lemon S. M.. 1987; Neutralization escape mutants define a dominant immunogenic neutralization site on hepatitis A virus. J Virol61:491–498[PubMed]
    [Google Scholar]
  46. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  47. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  48. Woo P. C., Wong B. H., Huang Y., Lau S. K., Yuen K. Y.. 2007; Cytosine deamination and selection of CpG suppressed clones are the two major independent biological forces that shape codon usage bias in coronaviruses. Virology369:431–442 [CrossRef][PubMed]
    [Google Scholar]
  49. Wright F.. 1990; The ‘effective number of codons’ used in a gene. Gene87:23–29 [CrossRef][PubMed]
    [Google Scholar]
  50. Yamashita T., Kobayashi S., Sakae K., Nakata S., Chiba S., Ishihara Y., Isomura S.. 1991; Isolation of cytopathic small round viruses with BS-C-1 cells from patients with gastroenteritis. J Infect Dis164:954–957 [CrossRef][PubMed]
    [Google Scholar]
  51. Yamashita T., Sakae K., Ishihara Y., Isomura S., Utagawa E.. 1993; Prevalence of newly isolated, cytopathic small round virus (Aichi strain) in Japan. J Clin Microbiol31:2938–2943[PubMed]
    [Google Scholar]
  52. Yamashita T., Sakae K., Tsuzuki H., Suzuki Y., Ishikawa N., Takeda N., Miyamura T., Yamazaki S.. 1998; Complete nucleotide sequence and genetic organization of Aichi virus, a distinct member of the Picornaviridae associated with acute gastroenteritis in humans. J Virol72:8408–8412[PubMed]
    [Google Scholar]
  53. Yamashita T., Sugiyama M., Tsuzuki H., Sakae K., Suzuki Y., Miyazaki Y.. 2000; Application of a reverse transcription-PCR for identification and differentiation of Aichi virus, a new member of the picornavirus family associated with gastroenteritis in humans. J Clin Microbiol38:2955–2961[PubMed]
    [Google Scholar]
  54. Yang S., Zhang W., Shen Q., Yang Z., Zhu J., Cui L., Hua X.. 2009; Aichi virus strains in children with gastroenteritis, China. Emerg Infect Dis15:1703–1705[PubMed][CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.040311-0
Loading
/content/journal/jgv/10.1099/vir.0.040311-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error