1887

Abstract

Previously, we finely mapped the neutralizing epitopes recognized by foot-and-mouth disease virus (FMDV) type Asia1-specific mAb 3E11 and FMDV type O-specific mAb 8E8. In this study, we engineered recombinant FMDVs of the serotype Asia1 (rFMDVs) displaying the type O-neutralizing epitope recognized by the mAb 8E8. These epitope-inserted viruses were genetically stable and exhibited growth properties that were similar to those of their parental virus. Importantly, the recombinant virus rFMDV-C showed neutralization sensitivity to both FMDV type Asia1 and type O mAbs, as well as to polyclonal antibodies. These results indicated that this epitope-inserted virus has the potential to induce neutralizing antibodies against both FMDV type Asia1 and type O. Our results demonstrated that the G-H loop of FMDV type Asia1 effectively displays the protective neutralizing epitopes of other FMDV serotypes, making this an attractive approach for the design of novel FMDV vaccines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.040253-0
2012-07-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/7/1442.html?itemId=/content/journal/jgv/10.1099/vir.0.040253-0&mimeType=html&fmt=ahah

References

  1. Acharya R., Fry E., Stuart D., Fox G., Rowlands D., Brown F.. ( 1989;). The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. . Nature 337:, 709–716. [CrossRef][PubMed]
    [Google Scholar]
  2. Berinstein A., Roivainen M., Hovi T., Mason P. W., Baxt B.. ( 1995;). Antibodies to the vitronectin receptor (integrin alpha V beta 3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. . J Virol 69:, 2664–2666.[PubMed]
    [Google Scholar]
  3. Bittle J. L., Houghten R. A., Alexander H., Shinnick T. M., Sutcliffe J. G., Lerner R. A., Rowlands D. J., Brown F.. ( 1982;). Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. . Nature 298:, 30–33. [CrossRef][PubMed]
    [Google Scholar]
  4. Borrego B., Camarero J. A., Mateu M. G., Domingo E.. ( 1995;). A highly divergent antigenic site of foot-and-mouth disease virus retains its immunodominance. . Viral Immunol 8:, 11–18. [CrossRef][PubMed]
    [Google Scholar]
  5. Clarke B. E., Newton S. E., Carroll A. R., Francis M. J., Appleyard G., Syred A. D., Highfield P. E., Rowlands D. J., Brown F.. ( 1987;). Improved immunogenicity of a peptide epitope after fusion to hepatitis B core protein. . Nature 330:, 381–384. [CrossRef][PubMed]
    [Google Scholar]
  6. Dorrell L., Yang H., Iversen A. K., Conlon C., Suttill A., Lancaster M., Dong T., Cebere I., Edwards A.. & other authors ( 2005;). Therapeutic immunization of highly active antiretroviral therapy-treated HIV-1-infected patients: safety and immunogenicity of an HIV-1 gag/poly-epitope DNA vaccine. . AIDS 19:, 1321–1323. [CrossRef][PubMed]
    [Google Scholar]
  7. Evans D. J., McKeating J., Meredith J. M., Burke K. L., Katrak K., John A., Ferguson M., Minor P. D., Weiss R. A., Almond J. W.. ( 1989;). An engineered poliovirus chimaera elicits broadly reactive HIV-1 neutralizing antibodies. . Nature 339:, 385–388, 340. [CrossRef][PubMed]
    [Google Scholar]
  8. Fischer D., Rood D., Barrette R. W., Zuwallack A., Kramer E., Brown F., Silbart L. K.. ( 2003;). Intranasal immunization of guinea pigs with an immunodominant foot-and-mouth disease virus peptide conjugate induces mucosal and humoral antibodies and protection against challenge. . J Virol 77:, 7486–7491. [CrossRef][PubMed]
    [Google Scholar]
  9. Fowler V. L., Knowles N. J., Paton D. J., Barnett P. V.. ( 2010;). Marker vaccine potential of a foot-and-mouth disease virus with a partial VP1 G-H loop deletion. . Vaccine 28:, 3428–3434. [CrossRef][PubMed]
    [Google Scholar]
  10. Fowler V. L., Bashiruddin J. B., Maree F. F., Mutowembwa P., Bankowski B., Gibson D., Cox S., Knowles N., Barnett P. V.. ( 2011;). Foot-and-mouth disease marker vaccine: cattle protection with a partial VP1 G-H loop deleted virus antigen. . Vaccine 29:, 8405–8411. [CrossRef][PubMed]
    [Google Scholar]
  11. Francis M. J., Hastings G. Z., Clarke B. E., Brown A. L., Beddell C. R., Rowlands D. J., Brown F.. ( 1990;). Neutralizing antibodies to all seven serotypes of foot-and-mouth disease virus elicited by synthetic peptides. . Immunology 69:, 171–176.[PubMed]
    [Google Scholar]
  12. Frimann T. H., Barfoed A. M., Aasted B., Kamstrup S.. ( 2007;). Vaccination of mice with plasmids expressing processed capsid protein of foot-and-mouth disease virus–importance of dominant and subdominant epitopes for antigenicity and protection. . Vaccine 25:, 6191–6200. [CrossRef][PubMed]
    [Google Scholar]
  13. Grubman M. J., Baxt B.. ( 2004;). Foot-and-mouth disease. . Clin Microbiol Rev 17:, 465–493. [CrossRef][PubMed]
    [Google Scholar]
  14. Grubman M. J., Robertson B. H., Morgan D. O., Moore D. M., Dowbenko D.. ( 1984;). Biochemical map of polypeptides specified by foot-and-mouth disease virus. . J Virol 50:, 579–586.[PubMed]
    [Google Scholar]
  15. Jackson T., Sharma A., Ghazaleh R. A., Blakemore W. E., Ellard F. M., Simmons D. L., Newman J. W., Stuart D. I., King A. M.. ( 1997;). Arginine-glycine-aspartic acid-specific binding by foot-and-mouth disease viruses to the purified integrin alpha(v)beta3 in vitro. . J Virol 71:, 8357–8361.[PubMed]
    [Google Scholar]
  16. Knipe D. M., Howley P. M.. ( 2007;). Picornaviridae: the viruses and their replication. In Fields Virology. , , 5th edn., pp. 796–830. Philadelphia: Lippincott Williams & Wilkins;.
  17. Laird M. E., Desrosiers R. C.. ( 2007;). Infectivity and neutralization of simian immunodeficiency virus with FLAG epitope insertion in gp120 variable loops. . J Virol 81:, 10838–10848. [CrossRef][PubMed]
    [Google Scholar]
  18. Logan D., Abu-Ghazaleh R., Blakemore W., Curry S., Jackson T., King A., Lea S., Lewis R., Newman J.. & other authors ( 1993;). Structure of a major immunogenic site on foot-and-mouth disease virus. . Nature 362:, 566–568. [CrossRef][PubMed]
    [Google Scholar]
  19. Lorin C., Delebecque F., Labrousse V., Da Silva L., Lemonnier F., Brahic M., Tangy F.. ( 2005;). A recombinant live attenuated measles vaccine vector primes effective HLA-A0201-restricted cytotoxic T lymphocytes and broadly neutralizing antibodies against HIV-1 conserved epitopes. . Vaccine 23:, 4463–4472. [CrossRef][PubMed]
    [Google Scholar]
  20. Mateu M. G., Camarero J. A., Giralt E., Andreu D., Domingo E.. ( 1995;). Direct evaluation of the immunodominance of a major antigenic site of foot-and-mouth disease virus in a natural host. . Virology 206:, 298–306. [CrossRef][PubMed]
    [Google Scholar]
  21. McKenna T. S., Lubroth J., Rieder E., Baxt B., Mason P. W.. ( 1995;). Receptor binding site-deleted foot-and-mouth disease (FMD) virus protects cattle from FMD. . J Virol 69:, 5787–5790.[PubMed]
    [Google Scholar]
  22. Monaghan P., Gold S., Simpson J., Zhang Z., Weinreb P. H., Violette S. M., Alexandersen S., Jackson T.. ( 2005;). The αvβ6 integrin receptor for foot-and-mouth disease virus is expressed constitutively on the epithelial cells targeted in cattle. . J Gen Virol 86:, 2769–2780. [CrossRef][PubMed]
    [Google Scholar]
  23. Neff S., Sá-Carvalho D., Rieder E., Mason P. W., Blystone S. D., Brown E. J., Baxt B.. ( 1998;). Foot-and-mouth disease virus virulent for cattle utilizes the integrin αvβ3 as its receptor. . J Virol 72:, 3587–3594.[PubMed]
    [Google Scholar]
  24. Pantophlet R., Wang M., Aguilar-Sino R. O., Burton D. R.. ( 2009;). The human immunodeficiency virus type 1 envelope spike of primary viruses can suppress antibody access to variable regions. . J Virol 83:, 1649–1659. [CrossRef][PubMed]
    [Google Scholar]
  25. Pfaff E., Mussgay M., Böhm H. O., Schulz G. E., Schaller H.. ( 1982;). Antibodies against a preselected peptide recognize and neutralize foot and mouth disease virus. . EMBO J 1:, 869–874.[PubMed]
    [Google Scholar]
  26. Plotkin S. A.. ( 2001;). Immunologic correlates of protection induced by vaccination. . Pediatr Infect Dis J 20:, 63–75. [CrossRef][PubMed]
    [Google Scholar]
  27. Reddy K. J., Banapour B., Anderson D. E., Lee S. H., Marquez J. P., Carlos M. P., Torres J. V.. ( 2004;). Induction of immune responses against human papillomaviruses by hypervariable epitope constructs. . Immunology 112:, 321–327. [CrossRef][PubMed]
    [Google Scholar]
  28. Rémond M., Da Costa B., Riffault S., Parida S., Breard E., Lebreton F., Zientara S., Delmas B.. ( 2009;). Infectious bursal disease subviral particles displaying the foot-and-mouth disease virus major antigenic site. . Vaccine 27:, 93–98. [CrossRef][PubMed]
    [Google Scholar]
  29. Ren X., Sodroski J., Yang X.. ( 2005;). An unrelated monoclonal antibody neutralizes human immunodeficiency virus type 1 by binding to an artificial epitope engineered in a functionally neutral region of the viral envelope glycoproteins. . J Virol 79:, 5616–5624. [CrossRef][PubMed]
    [Google Scholar]
  30. Rieder E., Baxt B., Lubroth J., Mason P. W.. ( 1994;). Vaccines prepared from chimeras of foot-and-mouth disease virus (FMDV) induce neutralizing antibodies and protective immunity to multiple serotypes of FMDV. . J Virol 68:, 7092–7098.[PubMed]
    [Google Scholar]
  31. Robertson B. H., Grubman M. J., Weddell G. N., Moore D. M., Welsh J. D., Fischer T., Dowbenko D. J., Yansura D. G., Small B., Kleid D. G.. ( 1985;). Nucleotide and amino acid sequence coding for polypeptides of foot-and-mouth disease virus type A12. . J Virol 54:, 651–660.[PubMed]
    [Google Scholar]
  32. Rong R., Bibollet-Ruche F., Mulenga J., Allen S., Blackwell J. L., Derdeyn C. A.. ( 2007;). Role of V1V2 and other human immunodeficiency virus type 1 envelope domains in resistance to autologous neutralization during clade C infection. . J Virol 81:, 1350–1359. [CrossRef][PubMed]
    [Google Scholar]
  33. Rowlands D. J., Clarke B. E., Carroll A. R., Brown F., Nicholson B. H., Bittle J. L., Houghten R. A., Lerner R. A.. ( 1983;). Chemical basis of antigenic variation in foot-and-mouth disease virus. . Nature 306:, 694–697. [CrossRef][PubMed]
    [Google Scholar]
  34. Sedlik C., Saron M., Sarraseca J., Casal I., Leclerc C.. ( 1997;). Recombinant parvovirus-like particles as an antigen carrier: a novel nonreplicative exogenous antigen to elicit protective antiviral cytotoxic T cells. . Proc Natl Acad Sci U S A 94:, 7503–7508. [CrossRef][PubMed]
    [Google Scholar]
  35. Varsani A., Williamson A. L., de Villiers D., Becker I., Christensen N. D., Rybicki E. P.. ( 2003;). Chimeric human papillomavirus type 16 (HPV-16) L1 particles presenting the common neutralizing epitope for the L2 minor capsid protein of HPV-6 and HPV-16. . J Virol 77:, 8386–8393. [CrossRef][PubMed]
    [Google Scholar]
  36. Wang H., Zhao L., Li W., Zhou G., Yu L.. ( 2011;). Identification of a conformational epitope on the VP1 G-H Loop of type Asia1 foot-and-mouth disease virus defined by a protective monoclonal antibody. . Vet Microbiol 148:, 189–199. [CrossRef][PubMed]
    [Google Scholar]
  37. Yang C. D., Liao J. T., Lai C. Y., Jong M. H., Liang C. M., Lin Y. L., Lin N. S., Hsu Y. H., Liang S. M.. ( 2007;). Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes. . BMC Biotechnol 7:, 62. [CrossRef][PubMed]
    [Google Scholar]
  38. Yang D., Zhang C., Zhao L., Zhou G., Wang H., Yu L.. ( 2011;). Identification of a conserved linear epitope on the VP1 protein of serotype O foot-and-mouth disease virus by neutralising monoclonal antibody 8E8. . Virus Res 155:, 291–299. [CrossRef][PubMed]
    [Google Scholar]
  39. Yu Y., Wang H., Zhao L., Zhang C., Jiang Z., Yu L.. ( 2011;). Fine mapping of a foot-and-mouth disease virus epitope recognized by serotype-independent monoclonal antibody 4B2. . J Microbiol 49:, 94–101. [CrossRef][PubMed]
    [Google Scholar]
  40. Zhao Y., Hammond R. W.. ( 2005;). Development of a candidate vaccine for Newcastle disease virus by epitope display in the cucumber mosaic virus capsid protein. . Biotechnol Lett 27:, 375–382. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.040253-0
Loading
/content/journal/jgv/10.1099/vir.0.040253-0
Loading

Data & Media loading...

Supplements

Supplementary table 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error