1887

Abstract

Group and serocomplex cross-reactive epitopes have been identified in the envelope (E) protein of several flaviviruses and have proven critical in vaccine and diagnostic antigen development. Here, we performed site-directed mutagenesis across the E gene of a recombinant expression plasmid that encodes the Japanese encephalitis virus (JEV) premembrane (prM) and E proteins and produces JEV virus-like particles (VLPs). Mutations were introduced at I135 and E138 in domain I; W101, G104, G106 and L107 in domain II; and T305, E306, K312, A315, S329, S331, G332 and D389 in domain III. None of the mutant JEV VLPs demonstrated reduced activity to the five JEV type-specific mAbs tested. Substitutions at W101, especially W101G, reduced reactivity dramatically with all of the flavivirus group cross-reactive mAbs. The group and JEV serocomplex cross-reactive mAbs examined recognized five and six different overlapping epitopes, respectively. Among five group cross-reactive epitopes, amino acids located in domains I, II and III were involved in one, five and three epitopes, respectively. Recognition by six JEV serocomplex cross-reactive mAbs was reduced by amino acid substitutions in domains II and III. These results suggest that amino acid residues located in the fusion loop of E domain II are the most critical for recognition by group cross-reactive mAbs, followed by residues of domains III and I. The amino acid residues of both domains II and III of the E protein were shown to be important in the binding of JEV serocomplex cross-reactive mAbs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.040238-0
2012-06-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/6/1185.html?itemId=/content/journal/jgv/10.1099/vir.0.040238-0&mimeType=html&fmt=ahah

References

  1. Beasley D. W., Barrett A. D.. ( 2002;). Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. . J Virol 76:, 13097–13100. [CrossRef][PubMed]
    [Google Scholar]
  2. Casals J., Brown L. V.. ( 1954;). Hemagglutination with arthropod-borne viruses. . J Exp Med 99:, 429–449. [CrossRef][PubMed]
    [Google Scholar]
  3. Chambers T. J., Hahn C. S., Galler R., Rice C. M.. ( 1990;). Flavivirus genome organization, expression, and replication. . Annu Rev Microbiol 44:, 649–688. [CrossRef][PubMed]
    [Google Scholar]
  4. Chang G. J., Hunt A. R., Davis B.. ( 2000;). A single intramuscular injection of recombinant plasmid DNA induces protective immunity and prevents Japanese encephalitis in mice. . J Virol 74:, 4244–4252. [CrossRef][PubMed]
    [Google Scholar]
  5. Chang G. J., Davis B. S., Stringfield C., Lutz C.. ( 2007;). Prospective immunization of the endangered California condors (Gymnogyps californianus) protects this species from lethal West Nile virus infection. . Vaccine 25:, 2325–2330. [CrossRef][PubMed]
    [Google Scholar]
  6. Chiou S. S., Chen W. J.. ( 2007;). Phenotypic changes in the Japanese encephalitis virus after one passage in Neuro-2a cells: generation of attenuated strains of the virus. . Vaccine 26:, 15–23. [CrossRef][PubMed]
    [Google Scholar]
  7. Chiou S. S., Crill W. D., Chen L. K., Chang G. J.. ( 2008;). Enzyme-linked immunosorbent assays using novel Japanese encephalitis virus antigen improve the accuracy of clinical diagnosis of flavivirus infections. . Clin Vaccine Immunol 15:, 825–835. [CrossRef][PubMed]
    [Google Scholar]
  8. Crill W. D., Chang G. J.. ( 2004;). Localization and characterization of flavivirus envelope glycoprotein cross-reactive epitopes. . J Virol 78:, 13975–13986. [CrossRef][PubMed]
    [Google Scholar]
  9. Crill W. D., Trainor N. B., Chang G. J.. ( 2007;). A detailed mutagenesis study of flavivirus cross-reactive epitopes using West Nile virus-like particles. . J Gen Virol 88:, 1169–1174. [CrossRef][PubMed]
    [Google Scholar]
  10. Crill W. D., Hughes H. R., Delorey M. J., Chang G. J.. ( 2009;). Humoral immune responses of dengue fever patients using epitope-specific serotype-2 virus-like particle antigens. . PLoS One 4:, e4991. [CrossRef][PubMed]
    [Google Scholar]
  11. Falconar A. K.. ( 2008;). Use of synthetic peptides to represent surface-exposed epitopes defined by neutralizing dengue complex- and flavivirus group-reactive monoclonal antibodies on the native dengue type-2 virus envelope glycoprotein. . J Gen Virol 89:, 1616–1621. [CrossRef][PubMed]
    [Google Scholar]
  12. Ferlenghi I., Clarke M., Ruttan T., Allison S. L., Schalich J., Heinz F. X., Harrison S. C., Rey F. A., Fuller S. D.. ( 2001;). Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus. . Mol Cell 7:, 593–602. [CrossRef][PubMed]
    [Google Scholar]
  13. Gentry M. K., Henchal E. A., McCown J. M., Brandt W. E., Dalrymple J. M.. ( 1982;). Identification of distinct antigenic determinants on dengue-2 virus using monoclonal antibodies. . Am J Trop Med Hyg 31:, 548–555.[PubMed]
    [Google Scholar]
  14. Gromowski G. D., Barrett N. D., Barrett A. D.. ( 2008;). Characterization of dengue virus complex-specific neutralizing epitopes on envelope protein domain III of dengue 2 virus. . J Virol 82:, 8828–8837. [CrossRef][PubMed]
    [Google Scholar]
  15. Halstead S. B.. ( 1988;). Pathogenesis of dengue: challenges to molecular biology. . Science 239:, 476–481. [CrossRef][PubMed]
    [Google Scholar]
  16. Hunt A. R., Cropp C. B., Chang G. J.. ( 2001;). A recombinant particulate antigen of Japanese encephalitis virus produced in stably-transformed cells is an effective noninfectious antigen and subunit immunogen. . J Virol Methods 97:, 133–149. [CrossRef][PubMed]
    [Google Scholar]
  17. Kanai R., Kar K., Anthony K., Gould L. H., Ledizet M., Fikrig E., Marasco W. A., Koski R. A., Modis Y.. ( 2006;). Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes. . J Virol 80:, 11000–11008. [CrossRef][PubMed]
    [Google Scholar]
  18. Kimura-Kuroda J., Yasui K.. ( 1983;). Topographical analysis of antigenic determinants on envelope glycoprotein V3 (E) of Japanese encephalitis virus, using monoclonal antibodies. . J Virol 45:, 124–132.[PubMed]
    [Google Scholar]
  19. Kimura-Kuroda J., Yasui K.. ( 1986;). Antigenic comparison of envelope protein E between Japanese encephalitis virus and some other flaviviruses using monoclonal antibodies. . J Gen Virol 67:, 2663–2672. [CrossRef][PubMed]
    [Google Scholar]
  20. Kuno G.. ( 2003;). Serodiagnosis of flaviviral infections and vaccinations in humans. . Adv Virus Res 61:, 3–65. [CrossRef][PubMed]
    [Google Scholar]
  21. Lai C. Y., Tsai W. Y., Lin S. R., Kao C. L., Hu H. P., King C. C., Wu H. C., Chang G. J., Wang W. K.. ( 2008;). Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. . J Virol 82:, 6631–6643. [CrossRef][PubMed]
    [Google Scholar]
  22. Lanciotti R. S., Roehrig J. T., Deubel V., Smith J., Parker M., Steele K., Crise B., Volpe K. E., Crabtree M. B.. & other authors ( 1999;). Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. . Science 286:, 2333–2337. [CrossRef][PubMed]
    [Google Scholar]
  23. Lindenbach B. D., Rice C. M.. ( 2003;). Molecular biology of flaviviruses. . Adv Virus Res 59:, 23–61. [CrossRef][PubMed]
    [Google Scholar]
  24. Lo Conte L., Chothia C., Janin J.. ( 1999;). The atomic structure of protein–protein recognition sites. . J Mol Biol 285:, 2177–2198. [CrossRef][PubMed]
    [Google Scholar]
  25. Mackenzie J. S., Gubler D. J., Petersen L. R.. ( 2004;). Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. . Nat Med 10: (Suppl.), S98–S109. [CrossRef][PubMed]
    [Google Scholar]
  26. Matsui K., Gromowski G. D., Li L., Schuh A. J., Lee J. C., Barrett A. D.. ( 2009;). Characterization of dengue complex-reactive epitopes on dengue 3 virus envelope protein domain III. . Virology 384:, 16–20. [CrossRef][PubMed]
    [Google Scholar]
  27. Modis Y., Ogata S., Clements D., Harrison S. C.. ( 2004;). Structure of the dengue virus envelope protein after membrane fusion. . Nature 427:, 313–319. [CrossRef][PubMed]
    [Google Scholar]
  28. Nybakken G. E., Nelson C. A., Chen B. R., Diamond M. S., Fremont D. H.. ( 2006;). Crystal structure of the West Nile virus envelope glycoprotein. . J Virol 80:, 11467–11474. [CrossRef][PubMed]
    [Google Scholar]
  29. Oliphant T., Nybakken G. E., Engle M., Xu Q., Nelson C. A., Sukupolvi-Petty S., Marri A., Lachmi B. E., Olshevsky U.. & other authors ( 2006;). Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein. . J Virol 80:, 12149–12159. [CrossRef][PubMed]
    [Google Scholar]
  30. Rey F. A., Heinz F. X., Mandl C., Kunz C., Harrison S. C.. ( 1995;). The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. . Nature 375:, 291–298. [CrossRef][PubMed]
    [Google Scholar]
  31. Roehrig J. T., Mathews J. H., Trent D. W.. ( 1983;). Identification of epitopes on the E glycoprotein of Saint Louis encephalitis virus using monoclonal antibodies. . Virology 128:, 118–126. [CrossRef][PubMed]
    [Google Scholar]
  32. Roehrig J. T., Hunt A. R., Johnson A. J., Hawkes R. A.. ( 1989;). Synthetic peptides derived from the deduced amino acid sequence of the E-glycoprotein of Murray Valley encephalitis virus elicit antiviral antibody. . Virology 171:, 49–60. [CrossRef][PubMed]
    [Google Scholar]
  33. Roehrig J. T., Johnson A. J., Hunt A. R., Bolin R. A., Chu M. C.. ( 1990;). Antibodies to dengue 2 virus E-glycoprotein synthetic peptides identify antigenic conformation. . Virology 177:, 668–675. [CrossRef][PubMed]
    [Google Scholar]
  34. Roehrig J. T., Bolin R. A., Kelly R. G.. ( 1998;). Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. . Virology 246:, 317–328. [CrossRef][PubMed]
    [Google Scholar]
  35. Stiasny K., Kiermayr S., Holzmann H., Heinz F. X.. ( 2006;). Cryptic properties of a cluster of dominant flavivirus cross-reactive antigenic sites. . J Virol 80:, 9557–9568. [CrossRef][PubMed]
    [Google Scholar]
  36. Sukupolvi-Petty S., Austin S. K., Purtha W. E., Oliphant T., Nybakken G. E., Schlesinger J. J., Roehrig J. T., Gromowski G. D., Barrett A. D.. & other authors ( 2007;). Type- and subcomplex-specific neutralizing antibodies against domain III of dengue virus type 2 envelope protein recognize adjacent epitopes. . J Virol 81:, 12816–12826. [CrossRef][PubMed]
    [Google Scholar]
  37. Trainor N. B., Crill W. D., Roberson J. A., Chang G. J.. ( 2007;). Mutation analysis of the fusion domain region of St. Louis encephalitis virus envelope protein. . Virology 360:, 398–406. [CrossRef][PubMed]
    [Google Scholar]
  38. Vaughn D. W., Hoke C. H. Jr. ( 1992;). The epidemiology of Japanese encephalitis: prospects for prevention. . Epidemiol Rev 14:, 197–221.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.040238-0
Loading
/content/journal/jgv/10.1099/vir.0.040238-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error