1887

Abstract

An important property of some spherical plant viruses is their ability to reassemble from native capsid protein (CP) and RNA into infectious virus-like particles (VLPs). Virions of cucumber mosaic virus (CMV) are stabilized by protein–RNA interactions and the nucleic acid is essential for assembly. This study demonstrated that VLPs will form in the presence of both ssDNA and dsDNA oligonucleotides, and with a lower size limit of 20 nt. Based on urea disruption assays, assembled VLPs from CMV CP and RNA (termed ReCMV) exhibited a level of stability similar to that of virions purified from plants, whilst VLPs from CMV CP and a 20mer exhibited comparable or greater stability. Fluorescent labelling of VLPs was achieved by the encapsidation of an Alexa Fluor 488-labelled 45mer oligonucleotide (ReCMV-Alexa488-45) and confirmed by transmission electron and confocal microscopy. Using ssDNA as a nucleating factor, encapsidation of fluorescently labelled streptavidin (53 kDa) conjugated to a biotinylated oligonucleotide was observed. The biological activity and stability of ReCMV and ReCMV-Alexa488-45 was confirmed in infectivity assays and insect vector feeding assays. This work demonstrates the utility of CMV CP as a protein cage for use in the growing repertoire of nanotechnological applications.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.040170-0
2012-05-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/5/1120.html?itemId=/content/journal/jgv/10.1099/vir.0.040170-0&mimeType=html&fmt=ahah

References

  1. Barnhill H. N. , Claudel-Gillet S. , Ziessel R. , Charbonnière L. J. , Wang Q. . ( 2007; ). Prototype protein assembly as scaffold for time-resolved fluoroimmuno assays. . J Am Chem Soc 129:, 7799–7806. [CrossRef] [PubMed]
    [Google Scholar]
  2. Chen B. . ( 1991; ). Encapsidation of nucleic acids by cucumovirus coat proteins. PhD thesis, University of Adelaide, Adelaide, Australia.
  3. Chen B. , Randles J. W. , Francki R. I. . ( 1995; ). Mixed-subunit capsids can be assembled in vitro with coat protein subunits from two cucumoviruses. . J Gen Virol 76:, 971–973. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chen C. , Kwak E.-S. , Stein B. , Kao C. C. , Dragnea B. . ( 2005; ). Packaging of gold particles in viral capsids. . J Nanosci Nanotechnol 5:, 2029–2033. [CrossRef] [PubMed]
    [Google Scholar]
  5. Choi Y. G. , Dreher T. W. , Rao A. L. . ( 2002; ). tRNA elements mediate the assembly of an icosahedral RNA virus. . Proc Natl Acad Sci U S A 99:, 655–660. [CrossRef] [PubMed]
    [Google Scholar]
  6. Comellas-Aragonès M. , Engelkamp H. , Claessen V. I. , Sommerdijk N. A. , Rowan A. E. , Christianen P. C. , Maan J. C. , Verduin B. J. , Cornelissen J. J. , Nolte R. J. . ( 2007; ). A virus-based single-enzyme nanoreactor. . Nat Nanotechnol 2:, 635–639. [CrossRef] [PubMed]
    [Google Scholar]
  7. Douglas T. , Young M. . ( 1998; ). Host-guest encapsulation of materials by assembled virus protein cages. . Nature 393:, 152–155. [CrossRef]
    [Google Scholar]
  8. Douglas T. , Young M. . ( 2006; ). Viruses: making friends with old foes. . Science 312:, 873–875. [CrossRef] [PubMed]
    [Google Scholar]
  9. Dragnea B. , Chen C. , Kwak E.-S. , Stein B. , Kao C. C. . ( 2003; ). Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses. . J Am Chem Soc 125:, 6374–6375. [CrossRef] [PubMed]
    [Google Scholar]
  10. Fischlechner M. , Donath E. . ( 2007; ). Viruses as building blocks for materials and devices. . Angew Chem Int Ed Engl 46:, 3184–3193. [CrossRef] [PubMed]
    [Google Scholar]
  11. Francki R. I. , Randles J. W. , Chambers T. C. , Wilson S. B. . ( 1966;) Some properties of purified cucumber mosaic virus (Q strain). . Virology 28:, 729–741.[CrossRef]
    [Google Scholar]
  12. Fraenkel-Conrat H. . ( 1970; ). Reconstitution of viruses. . Annu Rev Microbiol 24:, 463–478. [CrossRef] [PubMed]
    [Google Scholar]
  13. Fraenkel-Conrat H. , Williams R. C. . ( 1955; ). Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components. . Proc Natl Acad Sci U S A 41:, 690–698. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gonzalez M. J. , Plummer E. M. , Rae C. S. , Manchester M. . ( 2009; ). Interaction of cowpea mosaic virus (CPMV) nanoparticles with antigen presenting cells in vitro and in vivo. . PLoS One 4:, e7981. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hendrickson W. A. , Pähler A. , Smith J. L. , Satow Y. , Merritt E. A. , Phizackerley R. P. . ( 1989; ). Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. . Proc Natl Acad Sci U S A 86:, 2190–2194. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kaper J. M. . ( 1969; ). Reversible dissociation of cucumber mosaic virus (strain S). . Virology 37:, 134–139. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kaper J. M. , Geelen J. L. . ( 1971; ). Studies on the stabilizing forces of simple RNA viruses. II. Stability, dissociation and reassembly of cucumber mosaic virus. . J Mol Biol 56:, 277–294. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lewis J. D. , Destito G. , Zijlstra A. , Gonzalez M. J. , Quigley J. P. , Manchester M. , Stuhlmann H. . ( 2006; ). Viral nanoparticles as tools for intravital vascular imaging. . Nat Med 12:, 354–360. [CrossRef] [PubMed]
    [Google Scholar]
  19. Loo L. , Guenther R. H. , Basnayake V. R. , Lommel S. A. , Franzen S. . ( 2006; ). Controlled encapsidation of gold nanoparticles by a viral protein shell. . J Am Chem Soc 128:, 4502–4503. [CrossRef] [PubMed]
    [Google Scholar]
  20. Loo L. , Guenther R. H. , Lommel S. A. , Franzen S. . ( 2007; ). Encapsidation of nanoparticles by red clover necrotic mosaic virus. . J Am Chem Soc 129:, 11111–11117. [CrossRef] [PubMed]
    [Google Scholar]
  21. Lowe C. R. . ( 2000; ). Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures. . Curr Opin Struct Biol 10:, 428–434. [CrossRef] [PubMed]
    [Google Scholar]
  22. Manchester M. , Singh P. . ( 2006; ). Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. . Adv Drug Deliv Rev 58:, 1505–1522. [CrossRef] [PubMed]
    [Google Scholar]
  23. Miller R. A. , Presley A. D. , Francis M. B. . ( 2007; ). Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. . J Am Chem Soc 129:, 3104–3109. [CrossRef] [PubMed]
    [Google Scholar]
  24. Minten I. J. , Hendriks L. J. , Nolte R. J. , Cornelissen J. J. . ( 2009; ). Controlled encapsulation of multiple proteins in virus capsids. . J Am Chem Soc 131:, 17771–17773. [CrossRef] [PubMed]
    [Google Scholar]
  25. Ng J. C. , Liu S. , Perry K. L. . ( 2000; ). Cucumber mosaic virus mutants with altered physical properties and defective in aphid vector transmission. . Virology 276:, 395–403. [CrossRef] [PubMed]
    [Google Scholar]
  26. Ng J. C. , Josefsson C. , Clark A. J. , Franz A. W. , Perry K. L. . ( 2005; ). Virion stability and aphid vector transmissibility of Cucumber mosaic virus mutants. . Virology 332:, 397–405.[CrossRef]
    [Google Scholar]
  27. Palukaitis P. , García-Arenal F. . ( 2003; ). Cucumoviruses. . Adv Virus Res 62:, 241–323. [CrossRef] [PubMed]
    [Google Scholar]
  28. Palukaitis P. , Roossinck M. J. , Dietzgen R. G. , Francki R. I. . ( 1992; ). Cucumber mosaic virus. . Adv Virus Res 41:, 281–348. [CrossRef] [PubMed]
    [Google Scholar]
  29. Ren Y. , Wong S.-M. , Lim L.-Y. . ( 2006; ). In vitro-reassembled plant virus-like particles for loading of polyacids. . J Gen Virol 87:, 2749–2754. [CrossRef] [PubMed]
    [Google Scholar]
  30. Ren Y. , Wong S.-M. , Lim L.-Y. . ( 2010; ). Application of plant viruses as nano drug delivery systems. . Pharm Res 27:, 2509–2513. [CrossRef] [PubMed]
    [Google Scholar]
  31. Singh P. , Gonzalez M. J. , Manchester M. . ( 2006; ). Viruses and their uses in nanotechnology. . Drug Dev Res 67:, 23–41. [CrossRef]
    [Google Scholar]
  32. Smith T. J. , Chase E. , Schmidt T. , Perry K. L. . ( 2000; ). The structure of cucumber mosaic virus and comparison to cowpea chlorotic mottle virus. . J Virol 74:, 7578–7586. [CrossRef] [PubMed]
    [Google Scholar]
  33. Smith M. L. , Fitzmaurice W. P. , Turpen T. H. , Palmer K. E. . ( 2009; ). Display of peptides on the surface of tobacco mosaic virus particles. . Curr Top Microbiol Immunol 332:, 13–31. [CrossRef] [PubMed]
    [Google Scholar]
  34. Speir J. A. , Munshi S. , Wang G. , Baker T. S. , Johnson J. E. . ( 1995; ). Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. . Structure 3:, 63–78. [CrossRef] [PubMed]
    [Google Scholar]
  35. Steinmetz N. F. , Findlay K. C. , Noel T. R. , Parker R. , Lomonossoff G. P. , Evans D. J. . ( 2008; ). Layer-by-layer assembly of viral nanoparticles and polyelectrolytes: the film architecture is different for spheres versus rods. . ChemBioChem 9:, 1662–1670. [CrossRef] [PubMed]
    [Google Scholar]
  36. Sun J. , DuFort C. , Daniel M. C. , Murali A. , Chen C. , Gopinath K. , Stein B. , De M. , Rotello V. M. . & other authors ( 2007; ). Core-controlled polymorphism in virus-like particles. . Proc Natl Acad Sci U S A 104:, 1354–1359. [CrossRef] [PubMed]
    [Google Scholar]
  37. Wang X. , Niu Z. , Li S. , Wang Q. , Li X. . ( 2008; ). Nanomechanical characterization of polyaniline coated tobacco mosaic virus nanotubes. . J Biomed Mater Res A 87:, 8–14.[PubMed] [CrossRef]
    [Google Scholar]
  38. Wikoff W. R. , Tsai C. J. , Wang G. , Baker T. S. , Johnson J. E. . ( 1997; ). The structure of cucumber mosaic virus: cryoelectron microscopy, X-ray crystallography, and sequence analysis. . Virology 232:, 91–97. [CrossRef] [PubMed]
    [Google Scholar]
  39. Wu L. Q. , Payne G. F. . ( 2004; ). Biofabrication: using biological materials and biocatalysts to construct nanostructured assemblies. . Trends Biotechnol 22:, 593–599. [CrossRef] [PubMed]
    [Google Scholar]
  40. Young M. , Willits D. , Uchida M. , Douglas T. . ( 2008; ). Plant viruses as biotemplates for materials and their use in nanotechnology. . Annu Rev Phytopathol 46:, 361–384. [CrossRef] [PubMed]
    [Google Scholar]
  41. Zhao X. , Fox J. M. , Olson N. H. , Baker T. S. , Young M. J. . ( 1995; ). In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro-transcribed viral cDNA. . Virology 207:, 486–494. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.040170-0
Loading
/content/journal/jgv/10.1099/vir.0.040170-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error