1887

Abstract

An important property of some spherical plant viruses is their ability to reassemble from native capsid protein (CP) and RNA into infectious virus-like particles (VLPs). Virions of cucumber mosaic virus (CMV) are stabilized by protein–RNA interactions and the nucleic acid is essential for assembly. This study demonstrated that VLPs will form in the presence of both ssDNA and dsDNA oligonucleotides, and with a lower size limit of 20 nt. Based on urea disruption assays, assembled VLPs from CMV CP and RNA (termed ReCMV) exhibited a level of stability similar to that of virions purified from plants, whilst VLPs from CMV CP and a 20mer exhibited comparable or greater stability. Fluorescent labelling of VLPs was achieved by the encapsidation of an Alexa Fluor 488-labelled 45mer oligonucleotide (ReCMV-Alexa488-45) and confirmed by transmission electron and confocal microscopy. Using ssDNA as a nucleating factor, encapsidation of fluorescently labelled streptavidin (53 kDa) conjugated to a biotinylated oligonucleotide was observed. The biological activity and stability of ReCMV and ReCMV-Alexa488-45 was confirmed in infectivity assays and insect vector feeding assays. This work demonstrates the utility of CMV CP as a protein cage for use in the growing repertoire of nanotechnological applications.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.040170-0
2012-05-01
2021-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/5/1120.html?itemId=/content/journal/jgv/10.1099/vir.0.040170-0&mimeType=html&fmt=ahah

References

  1. Barnhill H. N., Claudel-Gillet S., Ziessel R., Charbonnière L. J., Wang Q. 2007; Prototype protein assembly as scaffold for time-resolved fluoroimmuno assays. J Am Chem Soc 129:7799–7806 [View Article][PubMed]
    [Google Scholar]
  2. Chen B. 1991 Encapsidation of nucleic acids by cucumovirus coat proteins. PhD thesis, University of Adelaide, Adelaide, Australia
  3. Chen B., Randles J. W., Francki R. I. 1995; Mixed-subunit capsids can be assembled in vitro with coat protein subunits from two cucumoviruses. J Gen Virol 76:971–973 [View Article][PubMed]
    [Google Scholar]
  4. Chen C., Kwak E.-S., Stein B., Kao C. C., Dragnea B. 2005; Packaging of gold particles in viral capsids. J Nanosci Nanotechnol 5:2029–2033 [View Article][PubMed]
    [Google Scholar]
  5. Choi Y. G., Dreher T. W., Rao A. L. 2002; tRNA elements mediate the assembly of an icosahedral RNA virus. Proc Natl Acad Sci U S A 99:655–660 [View Article][PubMed]
    [Google Scholar]
  6. Comellas-Aragonès M., Engelkamp H., Claessen V. I., Sommerdijk N. A., Rowan A. E., Christianen P. C., Maan J. C., Verduin B. J., Cornelissen J. J., Nolte R. J. 2007; A virus-based single-enzyme nanoreactor. Nat Nanotechnol 2:635–639 [View Article][PubMed]
    [Google Scholar]
  7. Douglas T., Young M. 1998; Host-guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155 [View Article]
    [Google Scholar]
  8. Douglas T., Young M. 2006; Viruses: making friends with old foes. Science 312:873–875 [View Article][PubMed]
    [Google Scholar]
  9. Dragnea B., Chen C., Kwak E.-S., Stein B., Kao C. C. 2003; Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses. J Am Chem Soc 125:6374–6375 [View Article][PubMed]
    [Google Scholar]
  10. Fischlechner M., Donath E. 2007; Viruses as building blocks for materials and devices. Angew Chem Int Ed Engl 46:3184–3193 [View Article][PubMed]
    [Google Scholar]
  11. Francki R. I., Randles J. W., Chambers T. C., Wilson S. B. 1966; Some properties of purified cucumber mosaic virus (Q strain). Virology 28:729–741 [CrossRef]
    [Google Scholar]
  12. Fraenkel-Conrat H. 1970; Reconstitution of viruses. Annu Rev Microbiol 24:463–478 [View Article][PubMed]
    [Google Scholar]
  13. Fraenkel-Conrat H., Williams R. C. 1955; Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components. Proc Natl Acad Sci U S A 41:690–698 [View Article][PubMed]
    [Google Scholar]
  14. Gonzalez M. J., Plummer E. M., Rae C. S., Manchester M. 2009; Interaction of cowpea mosaic virus (CPMV) nanoparticles with antigen presenting cells in vitro and in vivo. PLoS One 4:e7981 [View Article][PubMed]
    [Google Scholar]
  15. Hendrickson W. A., Pähler A., Smith J. L., Satow Y., Merritt E. A., Phizackerley R. P. 1989; Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. Proc Natl Acad Sci U S A 86:2190–2194 [View Article][PubMed]
    [Google Scholar]
  16. Kaper J. M. 1969; Reversible dissociation of cucumber mosaic virus (strain S). Virology 37:134–139 [View Article][PubMed]
    [Google Scholar]
  17. Kaper J. M., Geelen J. L. 1971; Studies on the stabilizing forces of simple RNA viruses. II. Stability, dissociation and reassembly of cucumber mosaic virus. J Mol Biol 56:277–294 [View Article][PubMed]
    [Google Scholar]
  18. Lewis J. D., Destito G., Zijlstra A., Gonzalez M. J., Quigley J. P., Manchester M., Stuhlmann H. 2006; Viral nanoparticles as tools for intravital vascular imaging. Nat Med 12:354–360 [View Article][PubMed]
    [Google Scholar]
  19. Loo L., Guenther R. H., Basnayake V. R., Lommel S. A., Franzen S. 2006; Controlled encapsidation of gold nanoparticles by a viral protein shell. J Am Chem Soc 128:4502–4503 [View Article][PubMed]
    [Google Scholar]
  20. Loo L., Guenther R. H., Lommel S. A., Franzen S. 2007; Encapsidation of nanoparticles by red clover necrotic mosaic virus. J Am Chem Soc 129:11111–11117 [View Article][PubMed]
    [Google Scholar]
  21. Lowe C. R. 2000; Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures. Curr Opin Struct Biol 10:428–434 [View Article][PubMed]
    [Google Scholar]
  22. Manchester M., Singh P. 2006; Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. Adv Drug Deliv Rev 58:1505–1522 [View Article][PubMed]
    [Google Scholar]
  23. Miller R. A., Presley A. D., Francis M. B. 2007; Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J Am Chem Soc 129:3104–3109 [View Article][PubMed]
    [Google Scholar]
  24. Minten I. J., Hendriks L. J., Nolte R. J., Cornelissen J. J. 2009; Controlled encapsulation of multiple proteins in virus capsids. J Am Chem Soc 131:17771–17773 [View Article][PubMed]
    [Google Scholar]
  25. Ng J. C., Liu S., Perry K. L. 2000; Cucumber mosaic virus mutants with altered physical properties and defective in aphid vector transmission. Virology 276:395–403 [View Article][PubMed]
    [Google Scholar]
  26. Ng J. C., Josefsson C., Clark A. J., Franz A. W., Perry K. L. 2005; Virion stability and aphid vector transmissibility of Cucumber mosaic virus mutants. Virology 332:397–405 [CrossRef]
    [Google Scholar]
  27. Palukaitis P., García-Arenal F. 2003; Cucumoviruses. Adv Virus Res 62:241–323 [View Article][PubMed]
    [Google Scholar]
  28. Palukaitis P., Roossinck M. J., Dietzgen R. G., Francki R. I. 1992; Cucumber mosaic virus. Adv Virus Res 41:281–348 [View Article][PubMed]
    [Google Scholar]
  29. Ren Y., Wong S.-M., Lim L.-Y. 2006; In vitro-reassembled plant virus-like particles for loading of polyacids. J Gen Virol 87:2749–2754 [View Article][PubMed]
    [Google Scholar]
  30. Ren Y., Wong S.-M., Lim L.-Y. 2010; Application of plant viruses as nano drug delivery systems. Pharm Res 27:2509–2513 [View Article][PubMed]
    [Google Scholar]
  31. Singh P., Gonzalez M. J., Manchester M. 2006; Viruses and their uses in nanotechnology. Drug Dev Res 67:23–41 [View Article]
    [Google Scholar]
  32. Smith T. J., Chase E., Schmidt T., Perry K. L. 2000; The structure of cucumber mosaic virus and comparison to cowpea chlorotic mottle virus. J Virol 74:7578–7586 [View Article][PubMed]
    [Google Scholar]
  33. Smith M. L., Fitzmaurice W. P., Turpen T. H., Palmer K. E. 2009; Display of peptides on the surface of tobacco mosaic virus particles. Curr Top Microbiol Immunol 332:13–31 [View Article][PubMed]
    [Google Scholar]
  34. Speir J. A., Munshi S., Wang G., Baker T. S., Johnson J. E. 1995; Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3:63–78 [View Article][PubMed]
    [Google Scholar]
  35. Steinmetz N. F., Findlay K. C., Noel T. R., Parker R., Lomonossoff G. P., Evans D. J. 2008; Layer-by-layer assembly of viral nanoparticles and polyelectrolytes: the film architecture is different for spheres versus rods. ChemBioChem 9:1662–1670 [View Article][PubMed]
    [Google Scholar]
  36. Sun J., DuFort C., Daniel M. C., Murali A., Chen C., Gopinath K., Stein B., De M., Rotello V. M. other authors 2007; Core-controlled polymorphism in virus-like particles. Proc Natl Acad Sci U S A 104:1354–1359 [View Article][PubMed]
    [Google Scholar]
  37. Wang X., Niu Z., Li S., Wang Q., Li X. 2008; Nanomechanical characterization of polyaniline coated tobacco mosaic virus nanotubes. J Biomed Mater Res A 87:8–14[PubMed] [CrossRef]
    [Google Scholar]
  38. Wikoff W. R., Tsai C. J., Wang G., Baker T. S., Johnson J. E. 1997; The structure of cucumber mosaic virus: cryoelectron microscopy, X-ray crystallography, and sequence analysis. Virology 232:91–97 [View Article][PubMed]
    [Google Scholar]
  39. Wu L. Q., Payne G. F. 2004; Biofabrication: using biological materials and biocatalysts to construct nanostructured assemblies. Trends Biotechnol 22:593–599 [View Article][PubMed]
    [Google Scholar]
  40. Young M., Willits D., Uchida M., Douglas T. 2008; Plant viruses as biotemplates for materials and their use in nanotechnology. Annu Rev Phytopathol 46:361–384 [View Article][PubMed]
    [Google Scholar]
  41. Zhao X., Fox J. M., Olson N. H., Baker T. S., Young M. J. 1995; In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro-transcribed viral cDNA. Virology 207:486–494 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.040170-0
Loading
/content/journal/jgv/10.1099/vir.0.040170-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error