1887

Abstract

Varicella-zoster virus (VZV) causes chickenpox and shingles. VZV is released from infected cells during natural infection, but remains highly cell-associated during experimental infection, and so most studies have utilized cell-associated infection models. We examined the impact of cell-free VZV infection of primary human foreskin fibroblasts (HFFs) on the receptor integrin α6 (ITGA6). qPCR and flow cytometry demonstrated that both cell-free VZV and cell-free UV-inactivated VZV downregulated transcription and cell-surface protein expression of ITGA6. To establish whether ITGA6 altered VZV infection, VZV transcripts and nuclear DNA levels were measured in HFFs treated with ITGA6 blocking antibody before infection. ITGA6 blocking did not impair virus entry but did negatively impact VZV transcription, and this effect was virus specific as transcription of the related herpes simplex virus type 1 was not similarly inhibited. This study identifies modulation of ITGA6 during cell-free VZV infection, and provides the first evidence linking ITGA6 with post-entry productive VZV gene expression.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.039917-0
2012-08-01
2019-09-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/8/1725.html?itemId=/content/journal/jgv/10.1099/vir.0.039917-0&mimeType=html&fmt=ahah

References

  1. Abendroth A. , Slobedman B. , Lee E. , Mellins E. , Wallace M. , Arvin A. M. . ( 2000; ). Modulation of major histocompatibility class II protein expression by varicella-zoster virus. . J Virol 74:, 1900–1907. [CrossRef] [PubMed]
    [Google Scholar]
  2. Arvin A. M. . ( 2001; ). Varicella-zoster virus. . In Fields Virology, , 4th edn., pp. 2731–2767. Edited by Knipe D. M. , Howley P. M. . . Philadelphia, USA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  3. Ballana E. , Pauls E. , Senserrich J. , Clotet B. , Perron-Sierra F. , Tucker G. C. , Esté J. A. . ( 2009; ). Cell adhesion through αV-containing integrins is required for efficient HIV-1 infection in macrophages. . Blood 113:, 1278–1286. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ballana E. , Pauls E. , Clotet B. , Perron-Sierra F. , Tucker G. C. , Esté J. A. . ( 2011; ). β5 integrin is the major contributor to the αV integrin-mediated blockade of HIV-1 replication. . J Immunol 186:, 464–470. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bustin S. A. . ( 2000; ). Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. . J Mol Endocrinol 25:, 169–193. [CrossRef] [PubMed]
    [Google Scholar]
  6. Carpenter J. E. , Henderson E. P. , Grose C. . ( 2009; ). Enumeration of an extremely high particle-to-PFU ratio for varicella-zoster virus. . J Virol 83:, 6917–6921. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chesnokova L. S. , Nishimura S. L. , Hutt-Fletcher L. M. . ( 2009; ). Fusion of epithelial cells by Epstein–Barr virus proteins is triggered by binding of viral glycoproteins gHgL to integrins αvβ6 or αvβ8. . Proc Natl Acad Sci U S A 106:, 20464–20469. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cohen J. I. , Straus S. E. . ( 2001; ). Varicella-zoster virus and its replication. . In Fields Virology, , 4th edn., pp. 2707–2730. Edited by Knipe D. M. , Howley P. M. . . Philadelphia, USA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  9. Cohen J. I. , Straus S. E. , Arvin A. M. . ( 2007;). Varicella-zoster virus replication, pathogenesis and management. . In Fields Virology, , 5th edn., pp. 2774–2818. Edited by Knipe D. M. , Howley P. M. . Philedelphia, USA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  10. Davison A. J. , Scott J. E. . ( 1986; ). The complete DNA sequence of varicella-zoster virus. . J Gen Virol 67:, 1759–1816. [CrossRef] [PubMed]
    [Google Scholar]
  11. Evander M. , Frazer I. H. , Payne E. , Qi Y. M. , Hengst K. , McMillan N. A. . ( 1997; ). Identification of the α6 integrin as a candidate receptor for papillomaviruses. . J Virol 71:, 2449–2456.[PubMed]
    [Google Scholar]
  12. Feire A. L. , Koss H. , Compton T. . ( 2004; ). Cellular integrins function as entry receptors for human cytomegalovirus via a highly conserved disintegrin-like domain. . Proc Natl Acad Sci U S A 101:, 15470–15475. [CrossRef] [PubMed]
    [Google Scholar]
  13. Fothergill T. , McMillan N. A. . ( 2006; ). Papillomavirus virus-like particles activate the PI3-kinase pathway via α-6 β-4 integrin upon binding. . Virology 352:, 319–328. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gianni T. , Gatta V. , Campadelli-Fiume G. . ( 2010; ). αVβ3-integrin routes herpes simplex virus to an entry pathway dependent on cholesterol-rich lipid rafts and dynamin2. . Proc Natl Acad Sci U S A 107:, 22260–22265. [CrossRef] [PubMed]
    [Google Scholar]
  15. Grose C. , Perrotta D. M. , Brunell P. A. , Smith G. C. . ( 1979; ). Cell-free varicella-zoster virus in cultured human melanoma cells. . J Gen Virol 43:, 15–27. [CrossRef] [PubMed]
    [Google Scholar]
  16. Honess R. W. , Roizman B. . ( 1974; ). Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. . J Virol 14:, 8–19.[PubMed]
    [Google Scholar]
  17. Hutt-Fletcher L. M. , Chesnokova L. S. . ( 2010; ). Integrins as triggers of Epstein–Barr virus fusion and epithelial cell infection. . Virulence 1:, 395–398. [CrossRef] [PubMed]
    [Google Scholar]
  18. Jones J. O. , Arvin A. M. . ( 2003; ). Microarray analysis of host cell gene transcription in response to varicella-zoster virus infection of human T cells and fibroblasts in vitro and SCIDhu skin xenografts in vivo. . J Virol 77:, 1268–1280. [CrossRef] [PubMed]
    [Google Scholar]
  19. Jones J. O. , Arvin A. M. . ( 2005; ). Viral and cellular gene transcription in fibroblasts infected with small plaque mutants of varicella-zoster virus. . Antiviral Res 68:, 56–65. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kajiji S. M. , Davceva B. , Quaranta V. . ( 1987; ). Six monoclonal antibodies to human pancreatic cancer antigens. . Cancer Res 47:, 1367–1376.[PubMed]
    [Google Scholar]
  21. Kajiji S. , Tamura R. N. , Quaranta V. . ( 1989; ). A novel integrin (αE β4) from human epithelial cells suggests a fourth family of integrin adhesion receptors. . EMBO J 8:, 673–680.[PubMed]
    [Google Scholar]
  22. Kerur N. , Veettil M. V. , Sharma-Walia N. , Sadagopan S. , Bottero V. , Paul A. G. , Chandran B. . ( 2010; ). Characterization of entry and infection of monocytic THP-1 cells by Kaposi’s sarcoma associated herpesvirus (KSHV): role of heparan sulfate, DC-SIGN, integrins and signaling. . Virology 406:, 103–116. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kondo K. , Kaneshima H. , Mocarski E. S. . ( 1994; ). Human cytomegalovirus latent infection of granulocyte-macrophage progenitors. . Proc Natl Acad Sci U S A 91:, 11879–11883. [CrossRef] [PubMed]
    [Google Scholar]
  24. Mercurio A. M. . ( 1995; ). Laminin receptors: achieving specificity through cooperation. . Trends Cell Biol 5:, 419–423. [CrossRef] [PubMed]
    [Google Scholar]
  25. Moffat J. F. , Stein M. D. , Kaneshima H. , Arvin A. M. . ( 1995; ). Tropism of varicella-zoster virus for human CD4+ and CD8+ T lymphocytes and epidermal cells in SCID-hu mice. . J Virol 69:, 5236–5242.[PubMed]
    [Google Scholar]
  26. Moffat J. F. , Zerboni L. , Kinchington P. R. , Grose C. , Kaneshima H. , Arvin A. M. . ( 1998; ). Attenuation of the vaccine Oka strain of varicella-zoster virus and role of glycoprotein C in alphaherpesvirus virulence demonstrated in the SCID-hu mouse. . J Virol 72:, 965–974.[PubMed]
    [Google Scholar]
  27. Müller E. J. , Williamson L. , Kolly C. , Suter M. M. . ( 2008; ). Outside-in signaling through integrins and cadherins: a central mechanism to control epidermal growth and differentiation?. J Invest Dermatol 128:, 501–516. [CrossRef] [PubMed]
    [Google Scholar]
  28. Ozaki T. , Kajita Y. , Namazue J. , Yamanishi K. . ( 1996; ). Isolation of varicella-zoster virus from vesicles in children with varicella. . J Med Virol 48:, 326–328. [CrossRef] [PubMed]
    [Google Scholar]
  29. Parry C. , Bell S. , Minson T. , Browne H. . ( 2005; ). Herpes simplex virus type 1 glycoprotein H binds to αvβ3 integrins. . J Gen Virol 86:, 7–10. [CrossRef] [PubMed]
    [Google Scholar]
  30. Payne E. , Bowles M. R. , Don A. , Hancock J. F. , McMillan N. A. . ( 2001; ). Human papillomavirus type 6b virus-like particles are able to activate the Ras-MAP kinase pathway and induce cell proliferation. . J Virol 75:, 4150–4157. [CrossRef] [PubMed]
    [Google Scholar]
  31. Pegtel D. M. , Subramanian A. , Sheen T. S. , Tsai C. H. , Golub T. R. , Thorley-Lawson D. A. . ( 2005; ). Epstein–Barr-virus-encoded LMP2A induces primary epithelial cell migration and invasion: possible role in nasopharyngeal carcinoma metastasis. . J Virol 79:, 15430–15442. [CrossRef] [PubMed]
    [Google Scholar]
  32. Ruoslahti E. , Giancotti F. G. . ( 1989; ). Integrins and tumor cell dissemination. . Cancer Cells 1:, 119–126.[PubMed]
    [Google Scholar]
  33. Sheppard D. , Rozzo C. , Starr L. , Quaranta V. , Erle D. J. , Pytela R. . ( 1990; ). Complete amino acid sequence of a novel integrin beta subunit (beta 6) identified in epithelial cells using the polymerase chain reaction. . J Biol Chem 265:, 11502–11507.[PubMed]
    [Google Scholar]
  34. Slobedman B. , Mocarski E. S. . ( 1999; ). Quantitative analysis of latent human cytomegalovirus. . J Virol 73:, 4806–4812.[PubMed]
    [Google Scholar]
  35. Veettil M. V. , Sadagopan S. , Sharma-Walia N. , Wang F. Z. , Raghu H. , Varga L. , Chandran B. . ( 2008; ). Kaposi’s sarcoma-associated herpesvirus forms a multimolecular complex of integrins (αVβ5, αVβ3, and α3β1) and CD98-xCT during infection of human dermal microvascular endothelial cells, and CD98-xCT is essential for the postentry stage of infection. . J Virol 82:, 12126–12144. [CrossRef] [PubMed]
    [Google Scholar]
  36. Wang X. , Huang D. Y. , Huong S. M. , Huang E. S. . ( 2005; ). Integrin αVβ3 is a coreceptor for human cytomegalovirus. . Nat Med 11:, 515–521. [CrossRef] [PubMed]
    [Google Scholar]
  37. Weller T. H. . ( 1953; ). Serial propagation in vitro of agents producing inclusion bodies derived from varicella and herpes zoster. . Proc Soc Exp Biol Med 83:, 340–346.[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.039917-0
Loading
/content/journal/jgv/10.1099/vir.0.039917-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error