1887

Abstract

The cytidine deaminase APOBEC3G (apolipoprotein B mRNA-editing enzyme-catalytic polypeptide 3G; A3G) exerts antiviral activity against retroviruses, hepatitis B virus, adeno-associated virus and transposable elements. We assessed whether the negative-strand RNA viruses measles, mumps and respiratory syncytial might be affected by A3G, and found that their infectivity was reduced by 1–2 logs (90–99 %) in A3G overexpressing Vero cells, and in T-cell lines expressing A3G at physiological levels. Viral RNA was co-precipitated with HA-tagged A3G and could be amplified by RT-PCR. Interestingly, A3G reduced viral transcription and protein expression in infected cells by 50–70 %, and caused an increased mutation frequency of 0.95 mutations per 1000 nt in comparison to the background level of 0.22/1000. The observed mutations were not specific for A3G [cytidine to uridine (C→U) or guanine to adenine (G→A) hypermutations], nor specific for ADAR (adenosine deaminase acting on RNA, A→G and U→C transitions, with preference for next neighbour-nucleotides U = A>C>G). In addition, A3G mutants with inactivated catalytic deaminase (H257R and E259Q) were inhibitory, indicating that the deaminase activity is not required for the observed antiviral activity. In combination, impaired transcription and increased mutation frequencies are sufficient to cause the observed reduction in viral infectivity and eliminate virus replication within a few passages in A3G-expressing cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.038919-0
2012-03-01
2024-07-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/3/565.html?itemId=/content/journal/jgv/10.1099/vir.0.038919-0&mimeType=html&fmt=ahah

References

  1. Aguiar R. S., Peterlin B. M. 2008; APOBEC3 proteins and reverse transcription. Virus Res 134:74–85 [View Article][PubMed]
    [Google Scholar]
  2. Baczko K., Lampe J., Liebert U. G., Brinckmann U., ter Meulen V., Pardowitz I., Budka H., Cosby S. L., Isserte S., Rima B. K. 1993; Clonal expansion of hypermutated measles virus in a SSPE brain. Virology 197:188–195 [View Article][PubMed]
    [Google Scholar]
  3. Bankamp B., Wilson J., Bellini W. J., Rota P. A. 2005; Identification of naturally occurring amino acid variations that affect the ability of the measles virus C protein to regulate genome replication and transcription. Virology 336:120–129 [View Article][PubMed]
    [Google Scholar]
  4. Bass B. L. 2002; RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846 [View Article][PubMed]
    [Google Scholar]
  5. Bishop K. N., Holmes R. K., Sheehy A. M., Malim M. H. 2004; APOBEC-mediated editing of viral RNA. Science 305:645 [View Article][PubMed]
    [Google Scholar]
  6. Bishop K. N., Holmes R. K., Malim M. H. 2006; Antiviral potency of APOBEC proteins does not correlate with cytidine deamination. J Virol 80:8450–8458 [View Article][PubMed]
    [Google Scholar]
  7. Bishop K. N., Verma M., Kim E. Y., Wolinsky S. M., Malim M. H. 2008; APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog 4:e1000231 [View Article][PubMed]
    [Google Scholar]
  8. Bonvin M., Achermann F., Greeve I., Stroka D., Keogh A., Inderbitzin D., Candinas D., Sommer P., Wain-Hobson S. other authors 2006; Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication. Hepatology 43:1364–1374 [View Article][PubMed]
    [Google Scholar]
  9. Bulliard Y., Turelli P., Röhrig U. F., Zoete V., Mangeat B., Michielin O., Trono D. 2009; Functional analysis and structural modeling of human APOBEC3G reveal the role of evolutionarily conserved elements in the inhibition of human immunodeficiency virus type 1 infection and Alu transposition. J Virol 83:12611–12621 [View Article][PubMed]
    [Google Scholar]
  10. Burnett A., Spearman P. 2007; APOBEC3G multimers are recruited to the plasma membrane for packaging into human immunodeficiency virus type 1 virus-like particles in an RNA-dependent process requiring the NC basic linker. J Virol 81:5000–5013 [View Article][PubMed]
    [Google Scholar]
  11. Cattaneo R., Schmid A., Eschle D., Baczko K., ter Meulen V., Billeter M. A. 1988; Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 55:255–265 [View Article][PubMed]
    [Google Scholar]
  12. Chambers P., Rima B. K., Duprex W. P. 2009; Molecular differences between two Jeryl Lynn mumps virus vaccine component strains, JL5 and JL2. J Gen Virol 90:2973–2981 [View Article][PubMed]
    [Google Scholar]
  13. Chelico L., Sacho E. J., Erie D. A., Goodman M. F. 2008; A model for oligomeric regulation of APOBEC3G cytosine deaminase-dependent restriction of HIV. J Biol Chem 283:13780–13791 [View Article][PubMed]
    [Google Scholar]
  14. Chen H., Lilley C. E., Yu Q., Lee D. V., Chou J., Narvaiza I., Landau N. R., Weitzman M. D. 2006; APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons. Curr Biol 16:480–485 [View Article][PubMed]
    [Google Scholar]
  15. Chen H., Wang L. W., Huang Y. Q., Gong Z. J. 2010; Interferon-alpha induces high expression of APOBEC3G and STAT-1 in vitro and in vivo . Int J Mol Sci 11:3501–3512 [View Article][PubMed]
    [Google Scholar]
  16. Chiu Y. L., Soros V. B., Kreisberg J. F., Stopak K., Yonemoto W., Greene W. C. 2005; Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature 435:108–114 [View Article][PubMed]
    [Google Scholar]
  17. Chiu Y. L., Witkowska H. E., Hall S. C., Santiago M., Soros V. B., Esnault C., Heidmann T., Greene W. C. 2006; High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition. Proc Natl Acad Sci U S A 103:15588–15593 [View Article][PubMed]
    [Google Scholar]
  18. Conticello S. G. 2008; The AID/APOBEC family of nucleic acid mutators. Genome Biol 9:229 [View Article][PubMed]
    [Google Scholar]
  19. Duprex W. P., Duffy I., McQuaid S., Hamill L., Cosby S. L., Billeter M. A., Schneider-Schaulies J., ter Meulen V., Rima B. K. 1999; The H gene of rodent brain-adapted measles virus confers neurovirulence to the Edmonston vaccine strain. J Virol 73:6916–6922[PubMed]
    [Google Scholar]
  20. Gallois-Montbrun S., Kramer B., Swanson C. M., Byers H., Lynham S., Ward M., Malim M. H. 2007; Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J Virol 81:2165–2178 [View Article][PubMed]
    [Google Scholar]
  21. Gallois-Montbrun S., Holmes R. K., Swanson C. M., Fernández-Ocaña M., Byers H. L., Ward M. A., Malim M. H. 2008; Comparison of cellular ribonucleoprotein complexes associated with the APOBEC3F and APOBEC3G antiviral proteins. J Virol 82:5636–5642 [View Article][PubMed]
    [Google Scholar]
  22. Hallak L. K., Spillmann D., Collins P. L., Peeples M. E. 2000; Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection. J Virol 74:10508–10513 [View Article][PubMed]
    [Google Scholar]
  23. Han Y., Wang X., Dang Y., Zheng Y. H. 2008; APOBEC3G and APOBEC3F require an endogenous cofactor to block HIV-1 replication. PLoS Pathog 4:e1000095 [View Article][PubMed]
    [Google Scholar]
  24. Harris R. S., Bishop K. N., Sheehy A. M., Craig H. M., Petersen-Mahrt S. K., Watt I. N., Neuberger M. S., Malim M. H. 2003; DNA deamination mediates innate immunity to retroviral infection. Cell 113:803–809 [View Article][PubMed]
    [Google Scholar]
  25. Hashimoto K., Ono N., Tatsuo H., Minagawa H., Takeda M., Takeuchi K., Yanagi Y. 2002; SLAM (CD150)-independent measles virus entry as revealed by recombinant virus expressing green fluorescent protein. J Virol 76:6743–6749 [View Article][PubMed]
    [Google Scholar]
  26. Holmes R. K., Malim M. H., Bishop K. N. 2007; APOBEC-mediated viral restriction: not simply editing?. Trends Biochem Sci 32:118–128 [View Article][PubMed]
    [Google Scholar]
  27. Hotta H., Nihei K., Abe Y., Kato S., Jiang D. P., Nagano-Fujii M., Sada K. 2006; Full-length sequence analysis of subacute sclerosing panencephalitis (SSPE) virus, a mutant of measles virus, isolated from brain tissues of a patient shortly after onset of SSPE. Microbiol Immunol 50:525–534[PubMed] [CrossRef]
    [Google Scholar]
  28. Huthoff H., Malim M. H. 2007; Identification of amino acid residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and virion encapsidation. J Virol 81:3807–3815 [View Article][PubMed]
    [Google Scholar]
  29. Huthoff H., Autore F., Gallois-Montbrun S., Fraternali F., Malim M. H. 2009; RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1. PLoS Pathog 5:e1000330 [View Article][PubMed]
    [Google Scholar]
  30. Iwatani Y., Chan D. S., Wang F., Maynard K. S., Sugiura W., Gronenborn A. M., Rouzina I., Williams M. C., Musier-Forsyth K., Levin J. G. 2007; Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Res 35:7096–7108 [View Article][PubMed]
    [Google Scholar]
  31. Janini M., Rogers M., Birx D. R., McCutchan F. E. 2001; Human immunodeficiency virus type 1 DNA sequences genetically damaged by hypermutation are often abundant in patient peripheral blood mononuclear cells and may be generated during near-simultaneous infection and activation of CD4+ T cells. J Virol 75:7973–7986 [View Article][PubMed]
    [Google Scholar]
  32. Khan M. A., Kao S., Miyagi E., Takeuchi H., Goila-Gaur R., Opi S., Gipson C. L., Parslow T. G., Ly H., Strebel K. 2005; Viral RNA is required for the association of APOBEC3G with human immunodeficiency virus type 1 nucleoprotein complexes. J Virol 79:5870–5874 [View Article][PubMed]
    [Google Scholar]
  33. Khan M. A., Goila-Gaur R., Opi S., Miyagi E., Takeuchi H., Kao S., Strebel K. 2007; Analysis of the contribution of cellular and viral RNA to the packaging of APOBEC3G into HIV-1 virions. Retrovirology 4:48 [View Article][PubMed]
    [Google Scholar]
  34. Koning F. A., Newman E. N., Kim E. Y., Kunstman K. J., Wolinsky S. M., Malim M. H. 2009; Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets. J Virol 83:9474–9485 [View Article][PubMed]
    [Google Scholar]
  35. Kozak S. L., Marin M., Rose K. M., Bystrom C., Kabat D. 2006; The anti-HIV-1 editing enzyme APOBEC3G binds HIV-1 RNA and messenger RNAs that shuttle between polysomes and stress granules. J Biol Chem 281:29105–29119 [View Article][PubMed]
    [Google Scholar]
  36. Lecossier D., Bouchonnet F., Clavel F., Hance A. J. 2003; Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300:1112 [View Article][PubMed]
    [Google Scholar]
  37. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408 [View Article][PubMed]
    [Google Scholar]
  38. Mangeat B., Turelli P., Caron G., Friedli M., Perrin L., Trono D. 2003; Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424:99–103 [View Article][PubMed]
    [Google Scholar]
  39. Navaratnam N., Bhattacharya S., Fujino T., Patel D., Jarmuz A. L., Scott J. 1995; Evolutionary origins of apoB mRNA editing: catalysis by a cytidine deaminase that has acquired a novel RNA-binding motif at its active site. Cell 81:187–195 [View Article][PubMed]
    [Google Scholar]
  40. Newman E. N., Holmes R. K., Craig H. M., Klein K. C., Lingappa J. R., Malim M. H., Sheehy A. M. 2005; Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity. Curr Biol 15:166–170 [View Article][PubMed]
    [Google Scholar]
  41. Parker R., Sheth U. 2007; P bodies and the control of mRNA translation and degradation. Mol Cell 25:635–646 [View Article][PubMed]
    [Google Scholar]
  42. Pauli E. K., Schmolke M., Hofmann H., Ehrhardt C., Flory E., Münk C., Ludwig S. 2009; High level expression of the anti-retroviral protein APOBEC3G is induced by influenza A virus but does not confer antiviral activity. Retrovirology 6:38 [View Article][PubMed]
    [Google Scholar]
  43. Peng G., Lei K. J., Jin W., Greenwell-Wild T., Wahl S. M. 2006; Induction of APOBEC3 family proteins, a defensive maneuver underlying interferon-induced anti-HIV-1 activity. J Exp Med 203:41–46 [View Article][PubMed]
    [Google Scholar]
  44. Perreault J., Noël J. F., Brière F., Cousineau B., Lucier J. F., Perreault J. P., Boire G. 2005; Retropseudogenes derived from the human Ro/SS-A autoantigen-associated hY RNAs. Nucleic Acids Res 33:2032–2041 [View Article][PubMed]
    [Google Scholar]
  45. Plumet S., Gerlier D. 2005; Optimized SYBR green real-time PCR assay to quantify the absolute copy number of measles virus RNAs using gene specific primers. J Virol Methods 128:79–87 [View Article][PubMed]
    [Google Scholar]
  46. Radecke F., Spielhofer P., Schneider H., Kaelin K., Huber M., Dötsch C., Christiansen G., Billeter M. A. 1995; Rescue of measles viruses from cloned DNA. EMBO J 14:5773–5784[PubMed]
    [Google Scholar]
  47. Rennick L. J., Duprex W. P., Rima B. K. 2007; Measles virus minigenomes encoding two autofluorescent proteins reveal cell-to-cell variation in reporter expression dependent on viral sequences between the transcription units. J Gen Virol 88:2710–2718 [View Article][PubMed]
    [Google Scholar]
  48. Reuter T., Weissbrich B., Schneider-Schaulies S., Schneider-Schaulies J. 2006; RNA interference with measles virus N, P, and L mRNAs efficiently prevents and with matrix protein mRNA enhances viral transcription. J Virol 80:5951–5957 [View Article][PubMed]
    [Google Scholar]
  49. Sarkis P. T., Ying S., Xu R., Yu X. F. 2006; STAT1-independent cell type-specific regulation of antiviral APOBEC3G by IFN-α. J Immunol 177:4530–4540[PubMed] [CrossRef]
    [Google Scholar]
  50. Sheehy A. M., Gaddis N. C., Choi J. D., Malim M. H. 2002; Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418:646–650 [View Article][PubMed]
    [Google Scholar]
  51. Sheehy A. M., Gaddis N. C., Malim M. H. 2003; The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9:1404–1407 [View Article][PubMed]
    [Google Scholar]
  52. Stopak K., de Noronha C., Yonemoto W., Greene W. C. 2003; HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell 12:591–601 [View Article][PubMed]
    [Google Scholar]
  53. Stopak K. S., Chiu Y. L., Kropp J., Grant R. M., Greene W. C. 2007; Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages, and dendritic cells. J Biol Chem 282:3539–3546 [View Article][PubMed]
    [Google Scholar]
  54. Suspène R., Petit V., Puyraimond-Zemmour D., Aynaud M. M., Henry M., Guétard D., Rusniok C., Wain-Hobson S., Vartanian J. P. 2011; Double-stranded RNA adenosine deaminase ADAR-1-induced hypermutated genomes among inactivated seasonal influenza and live attenuated measles virus vaccines. J Virol 85:2458–2462 [View Article][PubMed]
    [Google Scholar]
  55. Svarovskaia E. S., Xu H., Mbisa J. L., Barr R., Gorelick R. J., Ono A., Freed E. O., Hu W. S., Pathak V. K. 2004; Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs. J Biol Chem 279:35822–35828 [View Article][PubMed]
    [Google Scholar]
  56. Tanaka Y., Marusawa H., Seno H., Matsumoto Y., Ueda Y., Kodama Y., Endo Y., Yamauchi J., Matsumoto T. other authors 2006; Anti-viral protein APOBEC3G is induced by interferon-α stimulation in human hepatocytes. Biochem Biophys Res Commun 341:314–319 [View Article][PubMed]
    [Google Scholar]
  57. Turelli P., Mangeat B., Jost S., Vianin S., Trono D. 2004; Inhibition of hepatitis B virus replication by APOBEC3G. Science 303:1829 [View Article][PubMed]
    [Google Scholar]
  58. Wang G. F., Lin S. Y., Zhang H., Gao Y. L., Li W. Z., Xin G., Li K. S. 2008; APOBEC3F and APOBEC3G have no inhibition and hypermutation effect on the human influenza A virus. Acta Virol 52:193–194[PubMed]
    [Google Scholar]
  59. Wedekind J. E., Gillilan R., Janda A., Krucinska J., Salter J. D., Bennett R. P., Raina J., Smith H. C. 2006; Nanostructures of APOBEC3G support a hierarchical assembly model of high molecular mass ribonucleoprotein particles from dimeric subunits. J Biol Chem 281:38122–38126 [View Article][PubMed]
    [Google Scholar]
  60. Wichroski M. J., Robb G. B., Rana T. M. 2006; Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathog 2:e41 [View Article][PubMed]
    [Google Scholar]
  61. Yu X., Yu Y., Liu B., Luo K., Kong W., Mao P., Yu X. F. 2003; Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302:1056–1060 [View Article][PubMed]
    [Google Scholar]
  62. Zennou V., Perez-Caballero D., Göttlinger H., Bieniasz P. D. 2004; APOBEC3G incorporation into human immunodeficiency virus type 1 particles. J Virol 78:12058–12061 [View Article][PubMed]
    [Google Scholar]
  63. Zhang H., Yang B., Pomerantz R. J., Zhang C., Arunachalam S. C., Gao L. 2003; The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424:94–98 [View Article][PubMed]
    [Google Scholar]
  64. Zinke M., Kendl S., Singethan K., Fehrholz M., Reuter D., Rennick L., Herold M. J., Schneider-Schaulies J. 2009; Clearance of measles virus from persistently infected cells by short hairpin RNA. J Virol 83:9423–9431 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.038919-0
Loading
/content/journal/jgv/10.1099/vir.0.038919-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error