1887

Abstract

The cytidine deaminase APOBEC3G (apolipoprotein B mRNA-editing enzyme-catalytic polypeptide 3G; A3G) exerts antiviral activity against retroviruses, hepatitis B virus, adeno-associated virus and transposable elements. We assessed whether the negative-strand RNA viruses measles, mumps and respiratory syncytial might be affected by A3G, and found that their infectivity was reduced by 1–2 logs (90–99 %) in A3G overexpressing Vero cells, and in T-cell lines expressing A3G at physiological levels. Viral RNA was co-precipitated with HA-tagged A3G and could be amplified by RT-PCR. Interestingly, A3G reduced viral transcription and protein expression in infected cells by 50–70 %, and caused an increased mutation frequency of 0.95 mutations per 1000 nt in comparison to the background level of 0.22/1000. The observed mutations were not specific for A3G [cytidine to uridine (C→U) or guanine to adenine (G→A) hypermutations], nor specific for ADAR (adenosine deaminase acting on RNA, A→G and U→C transitions, with preference for next neighbour-nucleotides U = A>C>G). In addition, A3G mutants with inactivated catalytic deaminase (H257R and E259Q) were inhibitory, indicating that the deaminase activity is not required for the observed antiviral activity. In combination, impaired transcription and increased mutation frequencies are sufficient to cause the observed reduction in viral infectivity and eliminate virus replication within a few passages in A3G-expressing cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.038919-0
2012-03-01
2020-07-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/3/565.html?itemId=/content/journal/jgv/10.1099/vir.0.038919-0&mimeType=html&fmt=ahah

References

  1. Aguiar R. S., Peterlin B. M.. 2008; APOBEC3 proteins and reverse transcription. Virus Res134:74–85 [CrossRef][PubMed]
    [Google Scholar]
  2. Baczko K., Lampe J., Liebert U. G., Brinckmann U., ter Meulen V., Pardowitz I., Budka H., Cosby S. L., Isserte S., Rima B. K.. 1993; Clonal expansion of hypermutated measles virus in a SSPE brain. Virology197:188–195 [CrossRef][PubMed]
    [Google Scholar]
  3. Bankamp B., Wilson J., Bellini W. J., Rota P. A.. 2005; Identification of naturally occurring amino acid variations that affect the ability of the measles virus C protein to regulate genome replication and transcription. Virology336:120–129 [CrossRef][PubMed]
    [Google Scholar]
  4. Bass B. L.. 2002; RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem71:817–846 [CrossRef][PubMed]
    [Google Scholar]
  5. Bishop K. N., Holmes R. K., Sheehy A. M., Malim M. H.. 2004; APOBEC-mediated editing of viral RNA. Science305:645 [CrossRef][PubMed]
    [Google Scholar]
  6. Bishop K. N., Holmes R. K., Malim M. H.. 2006; Antiviral potency of APOBEC proteins does not correlate with cytidine deamination. J Virol80:8450–8458 [CrossRef][PubMed]
    [Google Scholar]
  7. Bishop K. N., Verma M., Kim E. Y., Wolinsky S. M., Malim M. H.. 2008; APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog4:e1000231 [CrossRef][PubMed]
    [Google Scholar]
  8. Bonvin M., Achermann F., Greeve I., Stroka D., Keogh A., Inderbitzin D., Candinas D., Sommer P., Wain-Hobson S.. other authors 2006; Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication. Hepatology43:1364–1374 [CrossRef][PubMed]
    [Google Scholar]
  9. Bulliard Y., Turelli P., Röhrig U. F., Zoete V., Mangeat B., Michielin O., Trono D.. 2009; Functional analysis and structural modeling of human APOBEC3G reveal the role of evolutionarily conserved elements in the inhibition of human immunodeficiency virus type 1 infection and Alu transposition. J Virol83:12611–12621 [CrossRef][PubMed]
    [Google Scholar]
  10. Burnett A., Spearman P.. 2007; APOBEC3G multimers are recruited to the plasma membrane for packaging into human immunodeficiency virus type 1 virus-like particles in an RNA-dependent process requiring the NC basic linker. J Virol81:5000–5013 [CrossRef][PubMed]
    [Google Scholar]
  11. Cattaneo R., Schmid A., Eschle D., Baczko K., ter Meulen V., Billeter M. A.. 1988; Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell55:255–265 [CrossRef][PubMed]
    [Google Scholar]
  12. Chambers P., Rima B. K., Duprex W. P.. 2009; Molecular differences between two Jeryl Lynn mumps virus vaccine component strains, JL5 and JL2. J Gen Virol90:2973–2981 [CrossRef][PubMed]
    [Google Scholar]
  13. Chelico L., Sacho E. J., Erie D. A., Goodman M. F.. 2008; A model for oligomeric regulation of APOBEC3G cytosine deaminase-dependent restriction of HIV. J Biol Chem283:13780–13791 [CrossRef][PubMed]
    [Google Scholar]
  14. Chen H., Lilley C. E., Yu Q., Lee D. V., Chou J., Narvaiza I., Landau N. R., Weitzman M. D.. 2006; APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons. Curr Biol16:480–485 [CrossRef][PubMed]
    [Google Scholar]
  15. Chen H., Wang L. W., Huang Y. Q., Gong Z. J.. 2010; Interferon-alpha induces high expression of APOBEC3G and STAT-1 in vitro and in vivo . Int J Mol Sci11:3501–3512 [CrossRef][PubMed]
    [Google Scholar]
  16. Chiu Y. L., Soros V. B., Kreisberg J. F., Stopak K., Yonemoto W., Greene W. C.. 2005; Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature435:108–114 [CrossRef][PubMed]
    [Google Scholar]
  17. Chiu Y. L., Witkowska H. E., Hall S. C., Santiago M., Soros V. B., Esnault C., Heidmann T., Greene W. C.. 2006; High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition. Proc Natl Acad Sci U S A103:15588–15593 [CrossRef][PubMed]
    [Google Scholar]
  18. Conticello S. G.. 2008; The AID/APOBEC family of nucleic acid mutators. Genome Biol9:229 [CrossRef][PubMed]
    [Google Scholar]
  19. Duprex W. P., Duffy I., McQuaid S., Hamill L., Cosby S. L., Billeter M. A., Schneider-Schaulies J., ter Meulen V., Rima B. K.. 1999; The H gene of rodent brain-adapted measles virus confers neurovirulence to the Edmonston vaccine strain. J Virol73:6916–6922[PubMed]
    [Google Scholar]
  20. Gallois-Montbrun S., Kramer B., Swanson C. M., Byers H., Lynham S., Ward M., Malim M. H.. 2007; Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J Virol81:2165–2178 [CrossRef][PubMed]
    [Google Scholar]
  21. Gallois-Montbrun S., Holmes R. K., Swanson C. M., Fernández-Ocaña M., Byers H. L., Ward M. A., Malim M. H.. 2008; Comparison of cellular ribonucleoprotein complexes associated with the APOBEC3F and APOBEC3G antiviral proteins. J Virol82:5636–5642 [CrossRef][PubMed]
    [Google Scholar]
  22. Hallak L. K., Spillmann D., Collins P. L., Peeples M. E.. 2000; Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection. J Virol74:10508–10513 [CrossRef][PubMed]
    [Google Scholar]
  23. Han Y., Wang X., Dang Y., Zheng Y. H.. 2008; APOBEC3G and APOBEC3F require an endogenous cofactor to block HIV-1 replication. PLoS Pathog4:e1000095 [CrossRef][PubMed]
    [Google Scholar]
  24. Harris R. S., Bishop K. N., Sheehy A. M., Craig H. M., Petersen-Mahrt S. K., Watt I. N., Neuberger M. S., Malim M. H.. 2003; DNA deamination mediates innate immunity to retroviral infection. Cell113:803–809 [CrossRef][PubMed]
    [Google Scholar]
  25. Hashimoto K., Ono N., Tatsuo H., Minagawa H., Takeda M., Takeuchi K., Yanagi Y.. 2002; SLAM (CD150)-independent measles virus entry as revealed by recombinant virus expressing green fluorescent protein. J Virol76:6743–6749 [CrossRef][PubMed]
    [Google Scholar]
  26. Holmes R. K., Malim M. H., Bishop K. N.. 2007; APOBEC-mediated viral restriction: not simply editing?. Trends Biochem Sci32:118–128 [CrossRef][PubMed]
    [Google Scholar]
  27. Hotta H., Nihei K., Abe Y., Kato S., Jiang D. P., Nagano-Fujii M., Sada K.. 2006; Full-length sequence analysis of subacute sclerosing panencephalitis (SSPE) virus, a mutant of measles virus, isolated from brain tissues of a patient shortly after onset of SSPE. Microbiol Immunol50:525–534[PubMed][CrossRef]
    [Google Scholar]
  28. Huthoff H., Malim M. H.. 2007; Identification of amino acid residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and virion encapsidation. J Virol81:3807–3815 [CrossRef][PubMed]
    [Google Scholar]
  29. Huthoff H., Autore F., Gallois-Montbrun S., Fraternali F., Malim M. H.. 2009; RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1. PLoS Pathog5:e1000330 [CrossRef][PubMed]
    [Google Scholar]
  30. Iwatani Y., Chan D. S., Wang F., Maynard K. S., Sugiura W., Gronenborn A. M., Rouzina I., Williams M. C., Musier-Forsyth K., Levin J. G.. 2007; Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Res35:7096–7108 [CrossRef][PubMed]
    [Google Scholar]
  31. Janini M., Rogers M., Birx D. R., McCutchan F. E.. 2001; Human immunodeficiency virus type 1 DNA sequences genetically damaged by hypermutation are often abundant in patient peripheral blood mononuclear cells and may be generated during near-simultaneous infection and activation of CD4+ T cells. J Virol75:7973–7986 [CrossRef][PubMed]
    [Google Scholar]
  32. Khan M. A., Kao S., Miyagi E., Takeuchi H., Goila-Gaur R., Opi S., Gipson C. L., Parslow T. G., Ly H., Strebel K.. 2005; Viral RNA is required for the association of APOBEC3G with human immunodeficiency virus type 1 nucleoprotein complexes. J Virol79:5870–5874 [CrossRef][PubMed]
    [Google Scholar]
  33. Khan M. A., Goila-Gaur R., Opi S., Miyagi E., Takeuchi H., Kao S., Strebel K.. 2007; Analysis of the contribution of cellular and viral RNA to the packaging of APOBEC3G into HIV-1 virions. Retrovirology4:48 [CrossRef][PubMed]
    [Google Scholar]
  34. Koning F. A., Newman E. N., Kim E. Y., Kunstman K. J., Wolinsky S. M., Malim M. H.. 2009; Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets. J Virol83:9474–9485 [CrossRef][PubMed]
    [Google Scholar]
  35. Kozak S. L., Marin M., Rose K. M., Bystrom C., Kabat D.. 2006; The anti-HIV-1 editing enzyme APOBEC3G binds HIV-1 RNA and messenger RNAs that shuttle between polysomes and stress granules. J Biol Chem281:29105–29119 [CrossRef][PubMed]
    [Google Scholar]
  36. Lecossier D., Bouchonnet F., Clavel F., Hance A. J.. 2003; Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science300:1112 [CrossRef][PubMed]
    [Google Scholar]
  37. Livak K. J., Schmittgen T. D.. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  38. Mangeat B., Turelli P., Caron G., Friedli M., Perrin L., Trono D.. 2003; Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature424:99–103 [CrossRef][PubMed]
    [Google Scholar]
  39. Navaratnam N., Bhattacharya S., Fujino T., Patel D., Jarmuz A. L., Scott J.. 1995; Evolutionary origins of apoB mRNA editing: catalysis by a cytidine deaminase that has acquired a novel RNA-binding motif at its active site. Cell81:187–195 [CrossRef][PubMed]
    [Google Scholar]
  40. Newman E. N., Holmes R. K., Craig H. M., Klein K. C., Lingappa J. R., Malim M. H., Sheehy A. M.. 2005; Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity. Curr Biol15:166–170 [CrossRef][PubMed]
    [Google Scholar]
  41. Parker R., Sheth U.. 2007; P bodies and the control of mRNA translation and degradation. Mol Cell25:635–646 [CrossRef][PubMed]
    [Google Scholar]
  42. Pauli E. K., Schmolke M., Hofmann H., Ehrhardt C., Flory E., Münk C., Ludwig S.. 2009; High level expression of the anti-retroviral protein APOBEC3G is induced by influenza A virus but does not confer antiviral activity. Retrovirology6:38 [CrossRef][PubMed]
    [Google Scholar]
  43. Peng G., Lei K. J., Jin W., Greenwell-Wild T., Wahl S. M.. 2006; Induction of APOBEC3 family proteins, a defensive maneuver underlying interferon-induced anti-HIV-1 activity. J Exp Med203:41–46 [CrossRef][PubMed]
    [Google Scholar]
  44. Perreault J., Noël J. F., Brière F., Cousineau B., Lucier J. F., Perreault J. P., Boire G.. 2005; Retropseudogenes derived from the human Ro/SS-A autoantigen-associated hY RNAs. Nucleic Acids Res33:2032–2041 [CrossRef][PubMed]
    [Google Scholar]
  45. Plumet S., Gerlier D.. 2005; Optimized SYBR green real-time PCR assay to quantify the absolute copy number of measles virus RNAs using gene specific primers. J Virol Methods128:79–87 [CrossRef][PubMed]
    [Google Scholar]
  46. Radecke F., Spielhofer P., Schneider H., Kaelin K., Huber M., Dötsch C., Christiansen G., Billeter M. A.. 1995; Rescue of measles viruses from cloned DNA. EMBO J14:5773–5784[PubMed]
    [Google Scholar]
  47. Rennick L. J., Duprex W. P., Rima B. K.. 2007; Measles virus minigenomes encoding two autofluorescent proteins reveal cell-to-cell variation in reporter expression dependent on viral sequences between the transcription units. J Gen Virol88:2710–2718 [CrossRef][PubMed]
    [Google Scholar]
  48. Reuter T., Weissbrich B., Schneider-Schaulies S., Schneider-Schaulies J.. 2006; RNA interference with measles virus N, P, and L mRNAs efficiently prevents and with matrix protein mRNA enhances viral transcription. J Virol80:5951–5957 [CrossRef][PubMed]
    [Google Scholar]
  49. Sarkis P. T., Ying S., Xu R., Yu X. F.. 2006; STAT1-independent cell type-specific regulation of antiviral APOBEC3G by IFN-α. J Immunol177:4530–4540[PubMed][CrossRef]
    [Google Scholar]
  50. Sheehy A. M., Gaddis N. C., Choi J. D., Malim M. H.. 2002; Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature418:646–650 [CrossRef][PubMed]
    [Google Scholar]
  51. Sheehy A. M., Gaddis N. C., Malim M. H.. 2003; The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med9:1404–1407 [CrossRef][PubMed]
    [Google Scholar]
  52. Stopak K., de Noronha C., Yonemoto W., Greene W. C.. 2003; HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell12:591–601 [CrossRef][PubMed]
    [Google Scholar]
  53. Stopak K. S., Chiu Y. L., Kropp J., Grant R. M., Greene W. C.. 2007; Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages, and dendritic cells. J Biol Chem282:3539–3546 [CrossRef][PubMed]
    [Google Scholar]
  54. Suspène R., Petit V., Puyraimond-Zemmour D., Aynaud M. M., Henry M., Guétard D., Rusniok C., Wain-Hobson S., Vartanian J. P.. 2011; Double-stranded RNA adenosine deaminase ADAR-1-induced hypermutated genomes among inactivated seasonal influenza and live attenuated measles virus vaccines. J Virol85:2458–2462 [CrossRef][PubMed]
    [Google Scholar]
  55. Svarovskaia E. S., Xu H., Mbisa J. L., Barr R., Gorelick R. J., Ono A., Freed E. O., Hu W. S., Pathak V. K.. 2004; Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs. J Biol Chem279:35822–35828 [CrossRef][PubMed]
    [Google Scholar]
  56. Tanaka Y., Marusawa H., Seno H., Matsumoto Y., Ueda Y., Kodama Y., Endo Y., Yamauchi J., Matsumoto T.. other authors 2006; Anti-viral protein APOBEC3G is induced by interferon-α stimulation in human hepatocytes. Biochem Biophys Res Commun341:314–319 [CrossRef][PubMed]
    [Google Scholar]
  57. Turelli P., Mangeat B., Jost S., Vianin S., Trono D.. 2004; Inhibition of hepatitis B virus replication by APOBEC3G. Science303:1829 [CrossRef][PubMed]
    [Google Scholar]
  58. Wang G. F., Lin S. Y., Zhang H., Gao Y. L., Li W. Z., Xin G., Li K. S.. 2008; APOBEC3F and APOBEC3G have no inhibition and hypermutation effect on the human influenza A virus. Acta Virol52:193–194[PubMed]
    [Google Scholar]
  59. Wedekind J. E., Gillilan R., Janda A., Krucinska J., Salter J. D., Bennett R. P., Raina J., Smith H. C.. 2006; Nanostructures of APOBEC3G support a hierarchical assembly model of high molecular mass ribonucleoprotein particles from dimeric subunits. J Biol Chem281:38122–38126 [CrossRef][PubMed]
    [Google Scholar]
  60. Wichroski M. J., Robb G. B., Rana T. M.. 2006; Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathog2:e41 [CrossRef][PubMed]
    [Google Scholar]
  61. Yu X., Yu Y., Liu B., Luo K., Kong W., Mao P., Yu X. F.. 2003; Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science302:1056–1060 [CrossRef][PubMed]
    [Google Scholar]
  62. Zennou V., Perez-Caballero D., Göttlinger H., Bieniasz P. D.. 2004; APOBEC3G incorporation into human immunodeficiency virus type 1 particles. J Virol78:12058–12061 [CrossRef][PubMed]
    [Google Scholar]
  63. Zhang H., Yang B., Pomerantz R. J., Zhang C., Arunachalam S. C., Gao L.. 2003; The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature424:94–98 [CrossRef][PubMed]
    [Google Scholar]
  64. Zinke M., Kendl S., Singethan K., Fehrholz M., Reuter D., Rennick L., Herold M. J., Schneider-Schaulies J.. 2009; Clearance of measles virus from persistently infected cells by short hairpin RNA. J Virol83:9423–9431 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.038919-0
Loading
/content/journal/jgv/10.1099/vir.0.038919-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error